Calculus Practice Questions Answers

提示If students who are studying calculus read this article and don’t know much about the situation, click the link below to jump to the previous article. This article is mainly used for the answers to the previous article. Calculus - clever solutions to indefinite and definite integral problems

Exercise 1

x = 1 t , d x = − 1 t 2 d t {x = \frac{1}{t},dx = - \frac{1}{ { {t^2}}}dt} x=t1,dx=t21dt

∫ 1 + t + t 2 t 2 d t    = 1 + t + t 2 t − 1 2 ∫ 2 t + 1 t 1 + t + t 2 d t    = 1 + x + x 2 − ∫ 1 1 + t + t 2 d t − 1 2 ∫ 1 t 1 + t + t 2 d t    = 1 + x + x 2 − ln ⁡ ( t + 1 2 + 1 + t + t 2 ) + 1 2 ∫ − 1 t 2 ( 1 t ) 2 + 1 t + 1 d t    = 1 + x + x 2 − ln ⁡ ( 2 + x + 2 1 + x + x 2 2 x ) + 1 2 ln ⁡ ( x + 1 2 + 1 + x + x 2 )    = 1 + x + x 2 + ln ⁡ x + 1 2 ln ⁡ 2 x + 1 + 2 1 + x + x 2 ( 2 + x + 2 1 + x + x 2 ) 2 + C \begin{array}{l}\int {\frac{ {\sqrt { {\rm{1 + t}} + {t^2}} }}{ { {t^2}}}} dt\\\;\\ = \frac{ {\sqrt { {\rm{1 + t}} + {t^2}} }}{t} - \frac{1}{2}\int {\frac{ {2t + 1}}{ {t\sqrt { {\rm{1 + t}} + {t^2}} }}} dt\\\;\\ = \sqrt { {\rm{1 + }}x + {x^2}} - \int {\frac{1}{ {\sqrt { {\rm{1 + t}} + {t^2}} }}} dt - \frac{1}{2}\int {\frac{1}{ {t\sqrt { {\rm{1 + t}} + {t^2}} }}} dt\\\;\\ = \sqrt { {\rm{1 + }}x + {x^2}} - \ln \left( {t + \frac{1}{2} + \sqrt { {\rm{1 + t}} + {t^2}} } \right) + \frac{1}{2}\int {\frac{ { - \frac{1}{ { {t^2}}}}}{ {\sqrt { { {\left( {\frac{1}{t}} \right)}^2}{\rm{ + }}\frac{1}{t} + 1} }}} dt\\\;\\ = \sqrt { {\rm{1 + }}x + {x^2}} - \ln \left( {\frac{ {2 + x + 2\sqrt { {\rm{1 + }}x + {x^2}} }}{ {2x}}} \right) + \frac{1}{2}\ln \left( {x + \frac{1}{2} + \sqrt { {\rm{1 + }}x{\rm{ + }}{x^2}} } \right)\\\;\\ = \sqrt { {\rm{1 + }}x + {x^2}} + \ln x + \frac{1}{2}\ln \frac{ {2x + 1 + 2\sqrt { {\rm{1 + }}x{\rm{ + }}{x^2}} }}{ { { {\left( {2 + x + 2\sqrt { {\rm{1 + }}x + {x^2}} } \right)}^2}}} + C \end{array} t21+t+t2 dt=t1+t+t2 21t1+t+t2 2 t + 1dt=1+x+x2 1+t+t2 1dt21t1+t+t2 1dt=1+x+x2 ln(t+21+1+t+t2 )+21(t1)2+t1+1 t21dt=1+x+x2 ln(2x _2+x+21+x+x2 )+21ln(x+21+1+x+x2 )=1+x+x2 +lnx+21ln(2+x+21+x+x2 )22 x + 1 + 21+x+x2 +C

Exercise 2 :

(1)原式 = lim ⁡ n → ∞ ∑ i = 1 n 2 n ⋅ ln ⁡ ( 1 + i n ) = 2 ∫ 0 1 ln ⁡ ( 1 + x ) d x = 2 x ln ⁡ ( 1 + x ) ∣ 0 1 − 2 ∫ 0 1 1 − 1 1 + x d x = 4 ln ⁡ 2 − 2 {\rm{ = }}\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{2}{n} \cdot \ln } \left( {1 + \frac{i}{n}} \right) = 2\int_0^1 {\ln (1 + x)} dx = 2x\ln \left( {1 + x} \right)|_0^1 - 2\int_0^1 {1 - \frac{1}{ {1 + x}}} dx = 4\ln 2 - 2 =nlimi=1nn2ln(1+ni)=201ln(1+x)dx=2x _ln(1+x)0120111+x1dx=4ln22

(2)原式 = lim ⁡ n → ∞ ∑ i = 0 n 1 n ⋅ 1 1 + ( i n ) 2 = ∫ 0 1 1 1 + x 2 d x = ∫ 0 π 4 sec ⁡ t d t = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ 0 π 4 = ln ⁡ ( 1 + 2 ) {\rm{ = }}\mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 0}^n {\frac{1}{n}} \cdot \frac{1}{ {\sqrt {1 + { {\left( {\frac{i}{n}} \right)}^2}} }} = \int_0^1 {\frac{1}{ {\sqrt {1 + {x^2}} }}} dx = \int_0^{\frac{\pi }{4}} {\sec t} dt = \ln \left| {\sec t + \tan t} \right|_0^{\frac{\pi }{4}} = \ln \left( {1 + \sqrt 2 } \right) =nlimi=0nn11+(ni)2 1=011+x2 1dx=04psectdt=lnsect+tant04p=ln(1+2 )

Exercise 3 :

(1)原式 = a 3 ∫ 0 π 2 cos ⁡ 2 t ( 1 − c o s t ) d t = a 3 ∫ 0 π 2 1 + cos ⁡ 2 t 2 d t − a 3 ∫ 0 π 2 ( 1 − s i n 2 t ) d sin ⁡ t = a 3 π 4 − a 3 + a 3 3 = a 3 π 4 − 2 a 3 3 = {a^3}\int_0^{\frac{\pi }{2}} { { {\cos }^2}t(1 - cost)} dt = {a^3}\int_0^{\frac{\pi }{2}} {\frac{ {1 + \cos 2t}}{2}} dt - {a^3}\int_0^{\frac{\pi }{2}} {(1 - si{n^2}t)} d\sin t = \frac{ { {a^3}\pi }}{4} - {a^3} + \frac{ { {a^3}}}{3} = \frac{ { {a^3}\pi }}{4} - \frac{ {2{a^3}}}{3} =a302pcos2t (1_cost)dt=a302p21+cos2 tdta302p(1sin2t )d_sint=4a3 p.ma3+3a3=4a3 p.m32a _3

(2) Let x = tan ⁡ t , dx = sec ⁡ 2 tdt {x = \tan t, dx = { { \sec }^2}tdt}x=tant,dx=sec2tdt ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x = ∫ 0 π 4 ln ⁡ ( 1 + t a n ( π 4 − x ) ) d x    = ∫ 0 π 4 ln ⁡ ( 2 1 + tan ⁡ x ) d x = ∫ 0 π 4 ln ⁡ 2 d x − ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x → = 1 2 ∫ 0 π 4 ln ⁡ 2 d x = π 8 ln ⁡ 2 \begin{array}{l} \int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx = \int_0^{\frac{\pi }{4}} {\ln (1 + tan(\frac{\pi }{4} - x))} dx\\\;\\ = \int_0^{\frac{\pi }{4}} {\ln (\frac{2}{ {1 + \tan x}})} dx = \int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ - }}\int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx \to {\rm{ = }}\frac{ {\rm{1}}}{ {\rm{2}}}\int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ = }}\frac{\pi }{ {\rm{8}}}\ln 2 \end{array} 04pln(1+tanx)dx=04pln(1+tan(4px))dx=04pln(1+tanx2)dx=04pln2dx04pln(1+tanx)dx=2104pln2dx=8pln2

Guess you like

Origin blog.csdn.net/cugautozp/article/details/109906390