【Probability and Statistics】 Final review

introduction

Normative: P ( Ω ) = 1 P(\Omega)=1P ( Ω )=1, P ( ∅ ) = 0 P(\emptyset)=0 P()=0
P ( A ) = geometric measure of gGometric measure P(A)=\frac{geometric measure of g}{geometric measure of G}P(A)=Geometric measure of GGeometric measure g
For pairwise mutually exclusive random events,
P ( ∑ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( AB ) P(\sum_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i)\\P(A\cup B)=P(A)+P (B)-P(AB)P(i=1Ai)=i=1P(Ai)P(AB)=P(A)+P(B)P(AB)

Conditional Probability

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
Total rate formula:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) = P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + . |B_1)+P(B_2)P(A|B_2)+...+P(B_n)P(A|B_n)P(A)=i=1nP(Bi)P(ABi)=P(B1)P(AB1)+P(B2)P(AB2)+...+P(Bn)P(ABn)
of which,B 1 , B 2 , . . . , B i , .B1,B2,...,Bi,...,Bnis the
division Bayesian formula:
P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A) =\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^nP(B_j)P(A|B_j)}P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P ( A ) P ( B ) ,AB ABA B function
{ P ( AB ) = P ( A ) P ( B ) P ( BC ) = P ( B ) P ( C ) P ( AC ) = P ( A ) P ( C ) \begin{cases} P( AB)=P(A)P(B)\\ P(BC)=P(B)P(C)\\ P(AC)=P(A)P(C) \end{cases} P(AB)=P(A)P(B)P ( BC )=P(B)P(C)P ( A C )=P(A)P(C)
Then ABC ABCA BC pairwise independent
P ( ABC ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C)P(ABC)=P ( A ) P ( B ) P ( C ) , then they are mutually independent
P n ( k ) = C nkpk ( 1 − p ) n − k P_n(k)=C_n^kp^k(1-p)^{nk }Pn(k)=Cnkpk(1p)n k , 则AAA innnExactly kk occurs in n experimentsk times

Probability distributions

distribution name mark official expect variance
01 distribution B ( 1 , p ) B(1,p) B(1,p) P ( X = 1 ) = p , P ( X = 0 ) = 1 − p P(X=1)=p,P(X=0)=1-p P(X=1)=p,P(X=0)=1p p p p p ( 1 − p ) p(1-p) p(1p)
binomial distribution B ( n , p ) B(n,p) B(n,p) P ( X = k ) = C n k p k q n − k P(X=k)=C_n^kp^kq^{n-k} P(X=k)=Cnkpkqnk n p np np n p ( 1 − p ) np(1-p) np(1p)
Poisson distribution P ( λ ) P(\lambda)P ( λ ) P ( X = k ) = λ kk ! and − λ ( k = 0 , . . . , + ∞ ) P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}(k=0,..., +\infty)P(X=k)=k!lkeλ (k=0,...,+) λ \lambdal λ \lambdal
hypergeometric distribution H ( N , m , M ) H(N,m,M) H(N,m,M) P ( X = k ) C M k C N − M n − k C N n ( k = 0 , 1 , . . . , min ⁡ ( M , n ) P(X=k)\frac{C^k_MC^{n-k}_{N-M}}{C^n_N}(k=0,1,...,\min(M,n) P(X=k)CNnCMkCNMnk(k=0,1,...,min(M,n) n M N \frac{nM}{N} NnM n M N ( 1 − M N ) ( N − n N − 1 ) \frac{nM}{N}(1-\frac{M}{N})(\frac{N-n}{N-1}) NnM(1NM)(N1Nn)
distribution name mark Probability Density cumulative probability distribution expect variance
Evenly distributed U ( a , b ) U(a,b) U(a,b) f ( x ) = { 1 b − a a ≤ x ≤ b 0 其他 f(x)=\begin{cases}\frac{1}{b-a}&a\le x\le b\\0&其他\end{cases} f(x)={ ba10axbOther F ( x ) = { 0 x < a x − a b − a a ≤ x < b 1 x ≥ b F(x)=\begin{cases}0&x<a\\\frac{x-a}{b-a}&a\le x<b\\1 &x\ge b\end{cases} F(x)= 0baxa1x<aax<bxb a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
index distribution E xp ( λ ) Exp(\lambda)E x p ( λ ) f ( x ) = { λ e − λ xx > 0 0 x ≤ 0 f(x)=\begin{cases}\lambda e^{-\lambda x}&x>0\\0 &x\le0\end{cases } }f(x)={ λeλx0x>0x0 F ( x ) = { 0 x < 0 1 − e λ x x ≥ 0 F(x)=\begin{cases}0&x<0\\1-e^{\lambda x}&x\ge 0\end{cases} F(x)={ 01eλxx<0x0 1 λ \frac 1\lambdal1 1 λ 2 \frac{1}{\lambda^2}l21
normal distribution N ( μ , σ 2 ) N(\mu,\sigma^2 )N ( μ ,p2) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x -\mu)^2}{2\sigma^2}}f(x)=2 p.m p1e2 p2( x μ )2 μ \mum σ 2 \sigma^2 p2
standard normal distribution N ( 0 , 1 ) N(0,1) N(0,1) ϕ ( x ) = 1 2 π e − x 2 2 \phi(x)=\frac 1{\sqrt{2\pi}}e^{-\frac{x^2}{2}}ϕ ( x )=2 p.m 1e2x2 Φ ( x ) = 1 2 π ∫ − ∞ xe − t 2 2 dt \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-\ frac{t^2}{2}}dtΦ ( x )=2 p.m 1xe2t2dt 0 1

Definition: P ( a < X ≤ b ) = ϕ ( b − μ σ ) − ϕ ( a − μ σ ) P(a<X\and b)=\phi(\frac{b-\mu}{\sigma })-\phi(\frac{a-\mu}{\sigma})P(a<Xb)=ϕ (pb m)ϕ (pa m)

two-dimensional probability distribution

Y = g ( X ) Y=g(X) Y=g(X),求 f X ( y ) f_X(y) fX(y):
X = h ( Y ) X=h(Y) X=h(Y), f X ( y ) = f x [ h ( y ) ] ∣ h ′ ( y ) ∣ f_X(y)=f_x[h(y)]|h'(y)| fX(y)=fx[h(y)]h(y)
P ( X = x i , Y = y i ) = P i j P(X=x_i,Y=y_i)=P_{ij} P(X=xi,Y=yi)=Pij,则 P ( X = x i ) = ∑ j = 1 ∞ P i j P(X=x_i)=\sum_{j=1}^\infty P_{ij} P(X=xi)=j=1Pij

Marginal probability density:
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) dyf Y ( y ) = ∫ − ∞ ∞ f ( x , y ) dx f_X(x)=\int_{-\infty}^ \infty f(x,y)dy\\ f_Y(y)=\int_{-\infty}^\infty f(x,y)dxfX(x)=f(x,y ) d yfY(y)=f(x,y ) d x
P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( Y ≤ y ) , F ( x , y ) = FX ( x ) FY ( y ) P(X\le x ,Y\le y)=P(X\le x)P(Y\le y),F(x,y)=F_X(x)F_Y(y)P(Xx,Yy)=P(Xx)P(Yy),F(x,y)=FX(x)FY( y ) , thenXXXYYY are independent of each other

条件分布:
P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) = P i j P ⋅ j P ( Y = y j ∣ X = x i ) = P ( X = x i , Y = y j ) P ( X = x i ) = P i j P i ⋅ f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) , f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) P(X=x_i|Y=y_j)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\frac{P_{ij}}{P_{\cdot j} }\\ P(Y=y_j|X=x_i)=\frac{P(X=x_i,Y=y_j)}{P(X=x_i)}=\frac{P_{ij}}{P_{i\cdot } }\\ f(x,y)=f_X(x)f_{Y|X}(y|x),f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} P(X=xiY=yj)=P ( Y)=yj)P(X=xi,Y=yj)=PjPijP ( Y)=yjX=xi)=P(X=xi)P(X=xi,Y=yj)=PiPijf(x,y)=fX(x)fYX(yx),fXY(xy)=fY(y)f(x,y)
Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y ) probability density

Z = G ( X , Y ) , F Z ( z ) = P ( Z ≤ z ) = P ( g ( X , Y ) ≤ z ) = ∬ D f ( x , y ) d x d y Z=G(X,Y),F_Z(z)=P(Z\le z)=P(g(X,Y)\le z)=\iint_Df(x,y)dxdy Z=G(X,Y),FZ(z)=P(Zz)=P(g(X,Y)z)=Df(x,y ) d x d y
其中D = { ( x , y ) ∣ g ( x , y ) ≤ z } D=\{(x,y)|g(x,y)\le z\}D={(x,y)g(x,y)z}

F Z ( z ) = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y , f Z ( z ) = d d z F Z ( z ) F_Z(z)=\iint_{g(x,y)\le z}f(x,y)dxdy,f_Z(z)=\frac{d}{dz}F_Z(z) FZ(z)=g(x,y)zf(x,y)dxdy,fZ(z)=dzdFZ( z )
For example,Z = X + YZ=X+YZ=X+Y
f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_Z(z)=\int_{-\infty}^{\infty}f(x,z-x)dx=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx fZ(z)=f(x,zx)dx=fX(x)fY(zx ) d x
∫ − ∞ ∞ e − t 2 dt = π \int_{-\infty}^{\infty}e^{-t^2}dt=\sqrt\piet2 dt=Pi
F M A X ( z ) = F 1 ( z ) F 2 ( z ) , F M I N ( z ) = 1 − ( 1 − F 1 ( z ) ) ( 1 − F 2 ( z ) ) F_{\mathrm{MAX}}(z)=F_1(z)F_2(z),F_{\mathrm{MIN}}(z)=1-(1-F_1(z))(1-F_2(z)) FMAX(z)=F1(z)F2(z),FMIN(z)=1(1F1(z))(1F2(z))

expectation and variance

E ( X ) = ∑ k = 1 ∞ xkpk E(X)=\sum_{k=1}^\infty x_kp_kE ( X )=k=1xkpk
E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^{\infty}xf(x)dx E ( X )=xf(x)dx
E [ g ( x ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x E[g(x)]=\int_{-\infty}^{\infty}g(x)f(x)dx E[g(x)]=g(x)f(x)dx
D ( x ) = E { [ X − E ( X ) ] 2 } D(x)=E\{[X-E(X)]^2\} D(x)=And {[ XE ( X ) ]2 }
D ( x ) = ∑ k = 1 ∞ [ xk − E ( X ) ] 2 pk D(x)=\sum_{k=1}^\infty [x_k-E(X)]^2p_kD(x)=k=1[xkE ( X ) ]2pk
D ( x ) = ∫ − ∞ ∞ [ x − E ( X ) ] 2 f ( x ) d x D(x)=\int_{-\infty}^\infty[x-E(X)]^2f(x)dx D(x)=[xE ( X ) ]2f(x)dx
D ( x ) = E ( X 2 ) − [ E ( X ) ] 2 D(x)=E(X^2)-[E(X)]^2 D(x)=E ( X2)[ E ( X ) ]2
D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X)
D ( X ± Y ) = D ( X ) ± D ( Y ) D(X\pm Y)=D(X)\pm D(Y) D(X±Y)=D(X)±D(Y)

Theorem of large numbers

Infinitesimal function:
P ( ∣ x − a ∣ ≥ ϵ ) ≤ D ( x ) ϵ 2 P(|xa|\ge\epsilon)\le\frac{D(x)}{\epsilon^2};P(xa) _ϵ2D(x)
The central limit theorem refers to nnNumber of occurrences of n -fold Bernoulli experiments:
P ( X ≤ x ) = ϕ ( x − npnpq ) P(X\le x)=\phi(\frac{x-np}{\sqrt{npq}})P(Xx)=ϕ (n pq xnp)

Sample distribution and statistics

x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xnIdentical distribution independent, E = μ , D = σ 2 E=\mu,D=\sigma^2E=m ,D=p2 ,则
P ( ∑ i = 1 nxi − n μ n σ ≤ x ) = ϕ ( x ) P(\frac{\sum_{i=1}^nx_i-n\mu}{\sqrt n\sigma}\ and x)=\phi(x)P(n pi=1nxin μx)=ϕ ( x )
overallXXX has a probability densityf ( x ) f(x)f(x),则 f ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f ( x i ) f(x_1,x_2,...,x_n)=\prod_{i=1}^nf(x_i) f(x1,x2,...,xn)=i=1nf(xi)
sample mean:
X ˉ = 1 n ∑ i = 1 n X n \bar X=\frac{1}{n}\sum_{i=1}^nX_nXˉ=n1i=1nXn
Sample variance:
S 2 = 1 n − 1 ∑ i = 1 n ( xi − x ˉ ) 2 S^2=\frac 1{n-1}\sum_{i=1}^n(x_i-\bar x) ^2S2=n11i=1n(xixˉ)2
中心矩
C ^ k = 1 n ∑ i = 1 n ( x i − x ˉ ) k \hat C_k=\frac{1}{n}\sum_{i=1}^n(x_i-\bar x)^k C^k=n1i=1n(xixˉ)k
原点矩
M ^ k = 1 n ∑ i = 1 n x i k \hat M_k=\frac 1n\sum_{i=1}^nx_i^k M^k=n1i=1nxik
x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xnIndependent, subject to χ 2 ( 1 ) \chi^2(1)h2 (1),∑ i = 1 nxi ∼ χ 2 ( n ) \sum_{i=1}^nx_i\sim\chi^2(n)i=1nxih2(n)
x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xnIndependent, subject to N ( 0 , 1 ) N(0,1)N(0,1 ) ,∑ i = 1 nxi 2 ∼ χ 2 ( n ) \sum_{i=1}^nx_i^2\sim\chi^2(n)i=1nxi2h2(n)
x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn独立, X i ∼ N ( μ i , σ i 2 ) X_i\sim N(\mu_i,\sigma_i^2) XiN ( mi,pi2),则 ∑ i = 1 n ( x i − μ i σ i ) 2 ∼ χ 2 ( n ) \sum_{i=1}^n(\frac{x_i-\mu_i}{\sigma_i})^2\sim\chi^2(n) i=1n(piximi)2h2(n)

X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1),Y\sim \chi^2(n) XN(0,1),Yh2 (n),则
XY / n ∼ t ( n ) \frac{X}{\sqrt{Y/n}}\sim t(n)and / n Xt(n)

X ∼ x 2 ( m ) , Y ∼ x 2 ( n ) X\sim \chi^2(m),Y\sim \chi^2(n)Xh2(m),Yh2(n),则:
X / m Y / n ∼ F ( m , n ) \frac{X/m}{Y/n}\sim F(m,n) and / nX/mF(m,n)
1 F ∼ F ( n , m ) \frac 1F\sim F(n,m) F1F(n,m)
F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\frac{1}{F_{\alpha}(n_2,n_1)} F1 - a(n1,n2)=Fa(n2,n1)1

x ˉ ∼ N ( μ , σ 2 / n ) , ( n − 1 ) s 2 / σ 2 ∼ χ 2 ( n − 1 ) \bar x\sim N(\mu,\sigma^2/n),( n-1)s^2/\sigma^2\sim\chi^2(n-1)xˉN ( μ ,p2/n),(n1)s2 /p2h2(n1)
x ˉ \bar x xˉ ands 2 s^2s2 independent
U = nx ˉ − μ σ ∼ N ( 0 , 1 ) , T = nx ˉ − μ s ∼ t ( n − 1 ) U=\sqrt n\frac{\bar x-\mu}{\sigma} \sim N(0,1),T=\sqrt n\frac{\bar x-\mu}{s}\sim t(n-1)U=n pxˉmN(0,1),T=n sxˉmt(n1)

Parameter Estimation

Form: E ( θ ^ ) = θ E(\hat \theta)=\thetaE(i^)=θvariance
:D(θ^1) < D(θ^2) D(\hat\theta_1)<D(\hat\theta_2)D(i^1)<D(i^2)
definition:lim ⁡ n → ∞ p ( ∣ θ ^ − θ ∣ < ϵ ) = 1 \lim_{n\to\infty}p(|\hat\theta-\theta|<\epsilon)=1limnp(i^θ<) _=1
E ^ ( X k ) = 1 n X i k \hat E(X^k)=\frac 1nX_i^k E^(Xk)=n1Xik

known conditions Estimation formula 1 − α 1-\alpha1alpha confidence interval
σ 2 \sigma^2 p2 Known, estimatedμ \mum U = x ˉ − μ σ / n ∼ N ( 0 , 1 ) U=\frac{\bar x-\mu}{\sigma/\sqrt n}\sim N(0,1)U=s /n xˉmN(0,1) ( x ˉ − σ nu α 2 , x ˉ + σ nu α 2 ) \bar x-\frac{\sigma}{\sqrt n}u_{\frac\alpha 2},\bar x+\frac{\sigma} {\sqrt n}u_{\frac\alpha 2})xˉn pu2a,xˉ+n pu2a)
σ 2 \sigma^2 p2 unknown, estimateμ \mum T = x ˉ − μ s / n ∼ t ( n − 1 ) T=\frac{\bar x-\mu}{s/\sqrt n}\sim t(n-1) T=s/n xˉmt(n1) ( x ˉ − s n t α 2 , x ˉ + s n t α 2 ) (\bar x-\frac{s}{\sqrt n}t_{\frac\alpha 2},\bar x+\frac{s}{\sqrt n}t_{\frac\alpha 2}) (xˉn st2a,xˉ+n st2a)
μ \muμ is known, estimateσ 2 \sigma^2p2 ( ∑ i = 1 n ( x i − μ ) 2 χ a 2 2 ( n ) , ∑ i = 1 n ( x i − μ ) 2 χ 1 − a 2 2 ( n ) ) (\frac{\sum_{i=1}^n(x_i-\mu)^2}{\chi^2_{\frac a2}(n)},\frac{\sum_{i=1}^n(x_i-\mu)^2}{\chi^2_{1-\frac a2}(n)}) (χ2a2(n)i=1n(xiμ)2,χ12a2(n)i=1n(xiμ)2)
μ \mu μ未知,求 σ 2 \sigma^2 σ2 ( ( n − 1 ) s 2 χ a 2 2 ( n − 1 ) , ( n − 1 ) s 2 χ 1 − a 2 2 ( n − 1 ) ) (\frac{(n-1)s^2}{\chi^2_{\frac a2}(n-1)},\frac{(n-1)s^2}{\chi^2_{1-\frac a2}(n-1)}) (χ2a2(n1)(n1)s2,χ12a2(n1)(n1)s2)

其中, S 2 S^2 S2为样本方差,分母 n − 1 n-1 n1, Q = ∑ i = 1 n ( x i − x ˉ ) 2 σ 2 = ( n − 1 ) s 2 σ 2 ∼ χ 2 ( n − 1 ) Q=\frac{\sum_{i=1}^n(x_i-\bar x)^2}{\sigma^2}=\frac{(n-1)s^2}{\sigma^2}\sim\chi^2(n-1) Q=σ2i=1n(xixˉ)2=σ2(n1)s2χ2(n1)

假设检验

已知条件 值 拒绝域 已知 σ 2 ,假设检验 μ U = x ˉ − μ 0 σ / n ∼ N ( 0 , 1 ) ∣ U ∣ = x ˉ − μ 0 σ / n ≥ u α 2 未知 σ 2 , 检验 μ T = x ˉ − μ 0 s / n ∼ t ( n − 1 ) ∣ T ∣ = ∣ x ˉ − μ 0 s / n ∣ ≥ t α 2 ( n − 1 ) χ 2 检验 χ 2 = ( n − 1 ) S 2 σ o 2 ∼ χ 2 ( n − 1 ) ( n − 1 ) s 2 σ o 2 ≤ χ 1 − α 2 2 ( n − 1 ) 或 ( n − 1 ) s 2 σ o 2 ≥ χ a 2 2 ( n − 1 ) \begin{array}{c|c|c} \mathrm{已知条件}&\mathrm{值}&\mathrm{拒绝域} \\\hline \mathrm{已知}\sigma^2,假设检验\mu&U=\frac{\bar x-\mu_0}{\sigma/\sqrt n}\sim N(0,1)&|U|=\frac{\bar x-\mu_0}{\sigma/\sqrt n}\ge u_{\frac{\alpha}{2}} \\\hline \mathrm{未知}\sigma^2,\mathrm{检验}\mu&T=\frac{\bar x-\mu_0}{s/\sqrt n}\sim t(n-1)&|T|=|\frac{\bar x-\mu_0}{s/\sqrt n}|\ge t_{\frac{\alpha}{2}}(n-1)\\\hline \chi^2\mathrm{检验}&\chi^2=\frac{(n-1)S^2}{\sigma_o^2}\sim\chi^2(n-1)&{\frac{(n-1)s^2}{\sigma_o^2}\le\chi^2_{1-\frac \alpha 2}(n-1)\mathrm{或}\frac{(n-1)s^2}{\sigma_o^2}\ge\chi^2_{\frac a2}(n-1)} \end{array} 已知条件已知σ2,假设检验μ未知σ2,检验μχ2检验U=σ/n xˉμ0N(0,1)T=s/n xˉμ0t(n1)χ2=σo2(n1)S2χ2(n1)拒绝域U=σ/n xˉμ0u2αT=s/n xˉμ0t2α(n1)σo2(n1)s2χ12α2(n1)σo2(n1)s2χ2a2(n1)

先检验 μ \mu μ再检验 σ \sigma σ
流程:提出原假设,确定检验水平,构造检验统计量,确定拒绝域。

Guess you like

Origin blog.csdn.net/qq_46640863/article/details/128897615