Ten application algorithms of deep learning in the financial field [with Python code]

introduction

As financial data continues to grow and become more complex, traditional statistical methods and machine learning techniques face challenges. Through the construction of multi-layer neural networks and the training and optimization of large-scale data, deep learning algorithms can extract richer and advanced feature representations from data, thereby providing more accurate and stable prediction and decision-making capabilities.

In the financial field, deep learning algorithms have been widely used in several key tasks. First of all, risk assessment is one of the important issues that financial institutions must face. Deep learning algorithms can identify potential risk factors hidden in the data and predict future risk situations by learning large-scale historical data. Second, fraud detection is an essential task in the financial industry. Deep learning algorithms can discover abnormal patterns and fraudulent behaviors by modeling transaction patterns and user behaviors, and improve the ability of financial institutions to identify and prevent fraud.

In addition, deep learning algorithms also play an important role in financial transactions. By modeling and forecasting market data, historical trading data and other relevant information, deep learning algorithms can help traders make more informed trading decisions and improve the effectiveness and profitability of trading strategies.

However, the application of deep learning algorithms in the financial field also faces some challenges and limitations. First, the quality and reliability of the data is critical to the performance of the algorithm. Secondly, the interpretability and credibility of algorithms are also the focus of financial supervision and risk control departments. Therefore, in the process of development and application of deep learning algorithms, further exploration and research are still needed to ensure their reliability and stability in the financial field.

This article will briefly introduce the principles of the top ten deep learning algorithms in the financial field and their unique application cases in the financial field, and provide a case template of Python deep learning core code, so that readers can combine their own data sets and application scenarios based on the code. expand.

Introduction to Algorithms and Code Examples

01

long short-term memory network

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) designed specifically for sequence prediction problems. Unlike traditional RNNs, LSTMs can effectively capture long-term dependencies in time series data, and thus are very useful in the financial field.

These networks contain memory cells capable of storing information in long sequences, allowing them to overcome the vanishing gradient problem in traditional RNNs. LSTMs are able to remember and utilize past information, making them suitable for analyzing financial time series data such as stock prices or economic indicators.

Use cases: LSTMs have various applications in finance, such as stock price forecasting, algorithmic trading, portfolio optimization, and fraud detection. They can also analyze economic indicators to predict market trends and help investors make more informed decisions.

Here is a sample code implementing LSTM in Python:

from keras.models import Sequential
from keras.layers import LSTM, Dense

# define the model
model = Sequential()
model.add(LSTM(50, input_shape=(timesteps, feature_dim)))
model.add(Dense(1, activation='sigmoid'))

# compile the model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit the model to the training data
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))


The above code is simplified and needs to be brought into the data variable to run. Next, use qstock to obtain data, take stock price forecasting as an example, and expand the above template to make it run:

# 获取股票数据
import qstock as qs
import pandas as pd
import numpy as np
data = qs.get_price('hs300').iloc[:,0]
# 提取训练数据
train_data = data[:'2021']
train_prices = train_data.values.reshape(-1, 1)

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
train_scaled = scaler.fit_transform(train_prices)

# 创建训练数据集
X_train = []
y_train = []
timesteps = 30  # 时间步长,可根据需求进行调整

for i in range(timesteps, len(train_scaled)):
    X_train.append(train_scaled[i - timesteps:i, 0])
    y_train.append(train_scaled[i, 0])

X_train, y_train = np.array(X_train), np.array(y_train)

# 调整输入数据的维度
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(50))
model.add(Dense(1))

# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 拟合模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

# 提取测试数据
test_data = data['2022':]
test_prices = test_data.values.reshape(-1, 1)

# 数据归一化
test_scaled = scaler.transform(test_prices)

# 创建测试数据集
X_test = []
y_test = []

for i in range(timesteps, len(test_scaled)):
    X_test.append(test_scaled[i - timesteps:i, 0])
    y_test.append(test_scaled[i, 0])

X_test, y_test = np.array(X_test), np.array(y_test)

# 调整输入数据的维度
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

# 使用模型进行预测
predicted_prices = model.predict(X_test)
import matplotlib.pyplot as plt

# 反归一化训练集和测试集的价格数据
train_prices_scaled = scaler.inverse_transform(train_scaled)
test_prices_scaled = scaler.inverse_transform(test_scaled)

# 反归一化预测结果
predicted_prices_scaled = scaler.inverse_transform(predicted_prices)

# 创建日期索引
train_dates = train_data.index[timesteps:]
test_dates = test_data.index[timesteps:]
plt.figure(figsize=(15, 7))
plt.plot(test_dates, test_prices_scaled[timesteps:], label='沪深300-测试数据');
plt.plot(test_dates, predicted_prices_scaled, label='LSTM预测收盘价格');
plt.legend();

35dafa44a4740174e8331236920d3e93.png

02

convolutional neural network

Convolutional Neural Networks (CNN) are a subset of deep learning methods designed to process and analyze grid-like data structures like images. In finance, they are widely used to evaluate complementary data sources such as satellite imagery and text data.

A CNN consists of multiple layers, each of which performs a specific task, such as feature extraction or classification. They are particularly effective in finance because they are very effective for tasks that require identifying patterns or structures in data.

Use cases: In finance, CNNs have been used for sentiment analysis, document classification, and even predicting market movements based on satellite images of parking lots or tankers. Additionally, they can help detect fraudulent transactions by analyzing patterns in transaction data.

Here is a sample code implementing a CNN in Python:

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.models import Sequential

# 定义模型
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3,3), activation='relu', input_shape=(input_rows, input_cols, input_channels)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=num_classes, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 将模型拟合到训练数据
model.fit(X_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(X_test, y_test))

# 在测试数据上评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print(f'Test loss: {score[0]:.3f}')
print(f'Test accuracy: {score[1]:.3f}')

03

Autoencoders

Autoencoders are an unsupervised deep learning method that learns effective data models by reconstructing input data with a small loss. In finance, they are very helpful for tasks such as dimensionality reduction, data compression, and anomaly detection.


An autoencoder consists of an encoder and a decoder. The encoder compresses the input data, and the decoder uses the compressed representation to reconstruct the original data. By teaching the network to reduce the difference between the input data and the reconstructed data, the network learns a simplified representation of the data.

Use case: Applications of autoencoders in finance include portfolio optimization, where they can help reduce the dimensionality of large datasets. They can also be used to detect unusual patterns in financial data, such as credit card fraud or insider transactions.

Here is a sample code implementing an autoencoder in Python:

from keras.layers import Input, Dense
from keras.models import Model

# 定义编码器模型
inputs = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(inputs)

# 定义解码器模型
decoded = Dense(input_dim, activation='sigmoid')(encoded)

# 定义自动编码器模型
autoencoder = Model(inputs, decoded)

# 编译自动编码器模型
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# 将模型拟合到训练数据
autoencoder.fit(X_train, X_train, epochs=num_epochs, batch_size=batch_size, validation_data=(X_test, X_test))
validation_data=(X_test, X_test)

04

deep reinforcement learning

Deep Reinforcement Learning (DRL) is a combination of deep learning and reinforcement learning that allows algorithms to learn by learning behavior and optimizing long-term rewards. In finance, DRL has been applied to tasks such as algorithmic trading and portfolio management.

In DRL, an agent interacts with the environment to achieve a specific goal. The agent gets feedback in the form of rewards or punishments and adjusts its behavior accordingly. By using deep learning techniques, agents can learn complex strategies and make better decisions.

Application case: In the financial field, DRL has been used in algorithmic trading, and agents can learn to trade stocks or other assets to maximize profits. It also applies to portfolio management, where agents can learn to balance risk and reward based on historical data and market conditions.

The following is an example of implementing DRL in Python:

# 导入必要的库
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam

# 创建环境
env = gym.make('CartPole-v1')

# 创建神经网络
model = Sequential()
model.add(Dense(24, input_dim=4, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(2, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))

# 使用深度强化学习训练模型
for episode in range(500):
    state = env.reset()
    state = np.reshape(state, [1, 4])
    done = False
    for time in range(500):
        action = np.argmax(model.predict(state)[0])
        next_state, reward, done, _ = env.step(action)
        reward = reward if not done else -10
        next_state = np.reshape(next_state, [1, 4])
        model.fit(state, model.predict(state), verbose=0)
        state = next_state
        if done:
            break

# 进行预测
state = env.reset()
state = np.reshape(state, [1, 4])
done = False
while not done:
    action = np.argmax(model.predict(state)[0])
    next_state, reward, done, _ = env.step(action)
    next_state = np.reshape(next_state, [1, 4])
    state = next_state

05

Generative Adversarial Networks

Generative Adversarial Networks, GAN, is a form of neural network composed of two models, the Generator and the Discriminator. The discriminator aims to accurately distinguish real samples from fake samples, while the generator is used to create artificial data samples. In banking, GANs are used to create fake financial data for machine learning model training.

The goal of the discriminator is to accurately distinguish real samples from synthetic samples, and the goal of the generator is to create samples realistic enough to fool the discriminator. The generator and discriminator are trained in an adversarial process. GANs have been used in finance, including creating fake financial data for training other machine learning models.

Application scenario: GAN has been used in the financial field to generate realistic synthetic financial data, which helps to overcome the limitations of scarce or confidential data. They can also simulate various market scenarios for stress testing and risk assessment for financial institutions.

The following is a sample code to implement GAN using Python:

from keras.layers import Input, Dense, LeakyReLU
from keras.models import Model, Sequential
import numpy as np

# 定义判别器模型
discriminator = Sequential()
discriminator.add(Dense(50, input_shape=(latent_dim,)))
discriminator.add(LeakyReLU(alpha=0.01))
discriminator.add(Dense(1, activation='sigmoid'))

# 编译判别器模型
discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 定义生成器模型
generator = Sequential()
generator.add(Dense(50, input_shape=(latent_dim,)))
generator.add(LeakyReLU(alpha=0.01))
generator.add(Dense(output_dim, activation='sigmoid'))

# 定义用于训练生成器的组合模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

# 编译组合模型
gan.compile(optimizer='adam', loss='binary_crossentropy')

# 定义辅助函数
def sample_noise(batch_size, latent_dim):
    """生成随机噪声样本。"""
    return np.random.rand(batch_size, latent_dim)

def sample_real_data(batch_size):
    """从数据集中抽样真实数据。"""
    idx = np.random.randint(0, data.shape[0], batch_size)
    return data[idx]

# 设置超参数
latent_dim = 10
batch_size = 32
num_epochs = 100
output_dim = data.shape[1]

# 训练GAN
for epoch in range(num_epochs):
    # 生成合成数据样本
    synthetic_data = generator.predict(sample_noise(batch_size, latent_dim))

    # 连接合成数据和真实数据
    real_data = sample_real_data(batch_size)
    x = np.concatenate((synthetic_data, real_data))

    # 为合成数据和真实数据创建标签
    y = np.concatenate((np.zeros(batch_size), np.ones(batch_size)))

    # 在合成数据和真实数据上训练判别器
    d_loss, d_acc = discriminator.train_on_batch(x, y)

    # 生成噪声作为生成器的输入
    noise = sample_noise(batch_size, latent_dim)

    # 训练生成器
    g_loss = gan.train_on_batch(noise, np.ones(batch_size))

    # 打印每个时期的损失和准确率
    print(f'时期: {epoch+1},判别器损失: {d_loss:.3f},判别器准确率: {d_acc:.3f},生成器损失: {g_loss:.3f}')

06

Variational Autoencoder

Variational Autoencoders (VAE) are generative deep learning algorithms that extend autoencoders with a probabilistic approach, enabling them to model complex data distributions. In finance, VAEs have been used for tasks such as option pricing and risk management.


A VAE consists of an encoder and a decoder, similar to an autoencoder. However, they learn a probability distribution over the latent space, making it possible to generate diverse samples from the learned distribution. This ability to model complex data distributions makes it suitable for financial applications.

Application scenarios: VAE has been used in tasks such as option pricing in the financial field, and can model complex distributions of underlying assets. They are also very useful for risk management, as they generate realistic samples of potential future scenarios, enabling financial institutions to assess and manage risk more effectively.

The following is a sample code to implement VAE using Python:

import tensorflow as tf
from tensorflow.keras import layers

# 定义编码器模型
input_shape = (28, 28, 1)
latent_dim = 2

encoder_inputs = tf.keras.Input(shape=input_shape)
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)

# 定义采样层
def sampling(args):
    z_mean, z_log_var = args
    epsilon = tf.keras.backend.random_normal(shape=tf.shape(z_mean))
    return z_mean + tf.exp(0.5 * z_log_var) * epsilon

z = layers.Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])

# 定义解码器模型
decoder_inputs = layers.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(decoder_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)

# 定义VAE模型
vae = tf.keras.Model(encoder_inputs, decoder_outputs)

# 定义损失函数
reconstruction_loss = tf.keras.losses.binary_crossentropy(encoder_inputs, decoder_outputs)
reconstruction_loss *= input_shape[0] * input_shape[1]
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = tf.reduce_mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)

# 预测模型
vae.compile(optimizer="adam")
vae.fit(x_train, x_train, epochs=10, batch_size=128)

# 预测结果
x_test_encoded = vae.encoder.predict(x_test, batch_size=128)
x_test_decoded = vae.decoder.predict(x_test_encoded, batch_size=128)

07

Graph neural network

Graph Neural Networks (GNN) is a class of deep learning algorithms for processing and analyzing graph-structured data. They have been applied to tasks such as fraud detection and risk assessment in the financial domain.

GNN operates on graph data, where nodes represent entities and edges represent relationships between entities. They can learn meaningful representations of nodes and edges, capturing complex relationships in data. This ability to model complex relationships makes it applicable in the financial domain.

Application scenario: GNN has been used in the financial field for tasks such as fraud detection, and can analyze the relationship between entities in a financial network, such as customers and transactions. They are also very useful for risk assessment, as they can model the interconnectedness of financial institutions and assess systemic risk.

The following is a sample code to implement GNN using Python:

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, global_max_pool

class GNN(torch.nn.Module):
    def __init__(self, num_features, num_classes):
        super(GNN, self).__init__()
        self.conv1 = GCNConv(num_features, 16)
        self.conv2 = GCNConv(16, num_classes)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = F.relu(self.conv1(x, edge_index))
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        x = global_max_pool(x, data.batch)
        return F.log_softmax(x, dim=1)

# 训练模型
model = GNN(num_features, num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.CrossEntropyLoss()

for epoch in range(100):
    model.train()
    optimizer.zero_grad()
    out = model(data)
    loss = criterion(out, data.y)
    loss.backward()
    optimizer.step()

# 预测结果并计算精确度和召回率
model.eval()
with torch.no_grad():
    pred = model(data).max(dim=1)[1]
    correct = pred.eq(data.y).sum().item()
    total = len(data.y)
    precision = correct / total
    recall = precision
    print(f"精确度:{precision},召回率:{recall}")

08

Transformer model

Transformer models are a class of deep learning algorithms designed for sequence-to-sequence tasks such as natural language processing. They have been successfully applied to tasks such as sentiment analysis and summarization of financial documents in the financial domain.

The Transformer model relies on a mechanism called self-attention, which enables it to weigh the importance of different elements in a sequence. This ability to capture long-distance dependencies and contextual information makes it suitable for financial applications involving textual data.

Application scenarios: The Transformer model has been used in the financial field for tasks such as sentiment analysis. It can analyze news articles, social media posts, or earnings call records to predict market trends. They can also summarize financial documents such as annual reports or regulatory filings, providing concise insights for decision makers.

The following is a sample code to implement Transformer using Python:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms

# 定义Transformer模型
class TransformerModel(nn.Module):
    def __init__(self, num_classes=10, d_model=512, nhead=8, num_encoder_layers=6, dim_feedforward=2048, dropout=0.1):
        super(TransformerModel, self).__init__()
        self.transformer_encoder = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout),
            num_layers=num_encoder_layers
        )
        self.fc = nn.Linear(d_model, num_classes)

    def forward(self, x):
        x = self.transformer_encoder(x)
        x = x.mean(dim=0)
        x = self.fc(x)
        return x

# 定义数据转换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 加载MNIST数据集
train_dataset = datasets.MNIST(root='data/', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='data/', train=False, transform=transform)

# 定义数据加载器
batch_size = 128
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 实例化模型和优化器
model = TransformerModel().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 定义损失
# 训练模型
epochs = 10
for epoch in range(1, epochs+1):
    model.train()
    for i, (images, labels) in enumerate(train_loader):
        images, labels = images.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    # 在测试集上评估模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}, Test Accuracy: {(correct/total)*100:.2f}%")

09

Deep Belief Network

Deep Belief Networks (DBN) is a deep learning algorithm that can learn to represent data using a hierarchical structure. In finance, they have been used for tasks such as feature extraction, classification, and regression.

DBNs are stacked by multiple layers of Restricted Boltzmann Machines (RBMs) or other unsupervised learning algorithms. Each layer learns to represent data in a more abstract and higher-level manner, enabling the network to capture complex patterns and relationships in the data.

Application scenarios: DBN has been applied in the financial field for tasks such as predicting stock prices, analyzing market sentiment, and modeling financial time series data. They can also be used in credit risk assessment, as they can identify hidden patterns in large data sets and help determine the likelihood of default. Furthermore, DBNs are also useful for portfolio optimization and asset allocation, as they can learn hierarchical relationships among various assets and market factors.

The following is a sample code to implement DBN using Python:

import tensorflow as tf

# 定义Deep Belief Network的各层
n_inputs = 784  # 输入特征数
n_hidden1 = 500  # 第一隐藏层的神经元数
n_hidden2 = 200  # 第二隐藏层的神经元数
n_outputs = 10  # 输出类别数

# 创建函数来定义每一层的权重和偏置
def create_layer(input_size, output_size, name):
    with tf.name_scope(name):
        weights = tf.Variable(tf.truncated_normal([input_size, output_size], stddev=0.1), name='weights')
        biases = tf.Variable(tf.constant(0.1, shape=[output_size]), name='biases')
        return weights, biases

# 定义网络的输入占位符
x = tf.placeholder(tf.float32, shape=[None, n_inputs], name='x')

# 定义每一层的权重和偏置
w1, b1 = create_layer(n_inputs, n_hidden1, 'hidden1')
w2, b2 = create_layer(n_hidden1, n_hidden2, 'hidden2')
w3, b3 = create_layer(n_hidden2, n_outputs, 'output')

# 定义网络的各层
hidden1 = tf.nn.relu(tf.matmul(x, w1) + b1)
hidden2 = tf.nn.relu(tf.matmul(hidden1, w2) + b2)
logits = tf.matmul(hidden2, w3) + b3

# 定义网络的标签占位符
y = tf.placeholder(tf.int32, shape=[None], name='y')

# 定义损失函数(交叉熵)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y)
loss = tf.reduce_mean(cross_entropy, name='loss')

# 定义优化器(Adam)
learning_rate = 0.01
optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

# 定义准确率矩阵
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

# 定义初始设置
init = tf.global_variables_initializer()
saver = tf.train.Saver()

# 导入数据集 (MNIST)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/")

# 训练模型
n_epochs = 10
batch_size = 100

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iteration in range(mnist.train.num_examples // batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={x: X_batch, y: y_batch})
        acc_train = accuracy.eval(feed_dict={x: X_batch, y: y_batch})
        acc_test = accuracy.eval(feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Epoch:", epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)
    save_path = saver.save(sess, "./my_model.ckpt")

# 利用模型进行预测
with tf.Session() as sess:
    saver.restore(sess, "./my_model.ckpt")
    X_new_scaled = [...]  # 要预测的数据
    y_pred = sess.run(logits, feed_dict={x: X_new_scaled})
    y_pred_class = tf.argmax(y_pred, axis=1).eval()

010

capsule network

Capsule Networks (CapsNet) is an innovative deep learning architecture that addresses some of the limitations of traditional convolutional neural networks (CNNs), such as the inability to capture spatial hierarchies and whole-part relationships in data. Although relatively new, CapsNet has shown great potential in various domains, including finance.

CapsNet consists of capsules, which are small groups of neurons that represent different properties of the input. These capsules are organized into layers and can communicate with other capsules in the network. CapsNet can learn to recognize objects or patterns regardless of their orientation, scale or position in the input, making them more robust and flexible than CNNs.

Application scenarios: CapsNet can be applied to various tasks in the financial field that involve the recognition of patterns, relationships, or structures in data. They can be used in sentiment analysis, which can capture hierarchical relationships between words and phrases in financial news or social media data. Furthermore, CapsNets can be used for credit risk assessment as they can learn to identify complex relationships between various borrower characteristics and default risk. They can also be used in market forecasting, fraud detection and other applications requiring pattern recognition and robustness.

The following is a sample code to implement CapsNet using Python:

from keras import layers
from keras import models
from keras import backend as K
from keras.utils import to_categorical
from keras.datasets import mnist

# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# 重新调整输入数据的形状
train_images = train_images.reshape(-1, 28, 28, 1).astype('float32') / 255.0
test_images = test_images.reshape(-1, 28, 28, 1).astype('float32') / 255.0

# 将标签转换为独热编码
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# Define the Capsule Network architecture
class CapsuleLayer(layers.Layer):
    def __init__(self, num_capsules, capsule_dim, routings=3, **kwargs):
        super(CapsuleLayer, self).__init__(**kwargs)
        self.num_capsules = num_capsules
        self.capsule_dim = capsule_dim
        self.routings = routings
        self.activation = layers.Activation('softmax')
        self.W = self.add_weight(shape=[num_capsules, 784, capsule_dim],
                                 initializer='glorot_uniform',
                                 trainable=True)

    def call(self, inputs):
        inputs_expand = K.expand_dims(inputs, 1)
        inputs_tiled = K.tile(inputs_expand, [1, self.num_capsules, 1, 1])
        inputs_hat = K.batch_dot(inputs_tiled, self.W, [3, 2])
        b = K.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsules, 784])
        for i in range(self.routings):
            c = self.activation(b)
            outputs = K.batch_dot(c, inputs_hat, [2, 3])
            if i < self.routings - 1:
                b += outputs
            else:
                return K.reshape(outputs, [-1, self.num_capsules * self.capsule_dim])

    def compute_output_shape(self, input_shape):
        return tuple([None, self.num_capsules * self.capsule_dim])

input_shape = (28, 28, 1)
inputs = layers.Input(shape=input_shape)

conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu')(inputs)

primary_capsules = layers.Conv2D(filters=32, kernel_size=9, strides=2, padding='valid')(conv1)
primary_capsules = layers.Reshape(target_shape=[-1, 8])(primary_capsules)

digit_capsules = CapsuleLayer(num_capsules=10, capsule_dim=16, routings=3)(primary_capsules)

output = layers.Dense(units=10, activation='softmax')(digit_capsules)

# Define the model
model = models.Model(inputs=inputs, outputs=output)

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Train the model
model.fit(train_images, train_labels, epochs=10, batch_size=128, validation_data=(test_images, test_labels))

# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

# Predict some results
predictions = model.predict(test_images[:10])
print('Predictions:', predictions)

epilogue

The application of deep learning algorithms in the financial field is making breakthroughs and bringing many opportunities and challenges to financial institutions. By utilizing deep learning algorithms, financial institutions can better understand and utilize big data to improve business efficiency and decision quality. However, we must also be aware that the application of deep learning algorithms in the financial field still faces some problems, such as data privacy and security, and the interpretability of algorithms. Therefore, continuous efforts in technology research and development, regulatory policies and industry standards are required. With the further development and innovation of deep learning algorithms, we can expect to see more application cases and success stories in the financial field. The continuous evolution of these algorithms will bring more accurate and reliable forecasting and decision-making capabilities to financial institutions, and promote the innovation and development of the financial industry.

"Top 10 Deep Learning Algorithms in Finance" , Christophe Atten

Link: https://medium.datadriveninvestor.com/top-10-deep-learning-algorithms-in-finance-5b70ed251bb7

8be95d7f69a504ff396f71b03ce8f5f1.png

About Python Financial Quantification

16d8b452f5a480c0dc363552e61a203d.png

Focus on sharing the application of Python in the field of financial quantification. Joining Knowledge Planet, you can get free qstock source code, more than 30 g of quantitative investment video materials, quantitative finance-related PDF materials, official account articles Python complete source code, direct communication with bloggers, answering questions, etc. Add personal WeChat sky2blue2 to get a 15% discount.

43196fe11de45b2ee6ced873edf525da.jpeg

Guess you like

Origin blog.csdn.net/ndhtou222/article/details/131016207