20221014 Complex numbers, hyperbolic complex numbers, dual numbers

foreword

This blog post introduces three plural forms.

1. Hyperbolic sine function and hyperbolic cosine function

- hyperbolic sine function

birth ⁡ x = ex − e − x 2 \birth x=\frac{e^xe^{-x}}{2}bornx=2exex
The Taylor expansion of the hyperbolic sine function is:
sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ ⋯ \sinh x=x+\frac{x^3}{3 !}+ \frac{x^5}{5 !}+\frac{x^7}{7 !}+\cdots \cdotsbornx=x+3!x3+5!x5+7!x7+⋯⋯
即:birth ⁡ x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \birth x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !}bornx=n=0( 2 n + 1 )!x2 n + 1
insert image description here

- hyperbolic cosine function

cosh ⁡ x = e x + e − x 2 \cosh x=\frac{e^x+e^{-x}}{2} coshx=2ex+ex

The Taylor expansion of the hyperbolic sine function is: cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ \cosh x=1+\frac{x^2}{2 !}+ \frac{x^4}{4 !}+\frac{x^6}{6 !}+\cdotscoshx=1+2!x2+4!x4+6!x6+

insert image description here

- hyperbolic tangent function

tanh ⁡ x = birth ⁡ x cosh ⁡ x = ex − e − xex + e − x \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^xe^{-x}}{ e^x+e^{-x}}fishyx=coshxbornx=ex+exexex

2. Angle definition

Rounded corners (from trigonometric and circular functions): α \alphaα corresponds to twice the area of ​​the graph.
insert image description here

Hyperbolic angle (derived from hyperbolic functions): α \alphaα corresponds to twice the area of ​​the graph.

insert image description here

Note: It does not say which angle is α \alphaα , which can be understood as a monotonically increasing function about the included angle.

The specific area of ​​the right figure is equal to 1 2 ln ( x + y ) \frac{1}{2}ln (x+y)21ln(x+y ) , according to the definition of hyperbolic angleα = 2 2 ln ( x + y ) \alpha= \frac{2}{2}ln (x+y)a=22ln(x+y ),即x + y = exp ⁡ ( α ) x+y=\exp(\alpha)x+y=exp ( α ) ;且x 2 − y 2 = 1 x^2-y^2=1x2y2=1 , thenx − y = exp ⁡ ( − α ) xy=\exp(-\alpha)xy=exp ( α ),则有x = exp ⁡ ( α ) + exp ⁡ ( − α ) 2 x=\frac{\exp(\alpha)+\exp(-\alpha)}{2}x=2e x p ( α ) + e x p ( α )y = exp ⁡ ( α ) − exp ⁡ ( − α ) 2 y=\frac{\exp(\alpha)-\exp(-\alpha)}{2}y=2e x p ( α ) e x p ( α )

The very ingenious simple form here comes from a virtual angle α \alphaα , or defines the angle in terms of area, really opens up new ideas.

3. Complex numbers, hyperbolic complex numbers, even numbers (extension of real numbers)

- unit circle x 2 + y 2 = 1 x^2+y^2=1x2+y2=1

Define complex units on the unit circle iii , the corresponding area isα 2 \frac{\alpha}{2}2a, the corresponding complex number is cos ⁡ α + i sin ⁡ α \cos \alpha+i \sin \alphacosa+isinα ,in the case ofexpp ⁡ ( i α ) = cos ⁡ α + i sin ⁡ α \exp(i\alpha)=\cos \alpha+i \sin \alphaexp(iα)=cosa+isinα,展开为 exp ⁡ ( i α ) = 1 + i α + 1 2 ! i 2 α 2 + 1 3 ! i 3 α 3 + 1 4 ! i 4 α 4 + ⋯ \exp(i\alpha)=1+i\alpha+\frac{1}{2!}i^2\alpha^2+\frac{1}{3!}i^3\alpha^3+\frac{1}{4!}i^4\alpha^4+\cdots exp(iα)=1+iα+2!1i2 a2+3!1i3 a3+4!1i4 a4+ cos ⁡ α = ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! α 2 k = 1 − 1 2 ! α 2 + 1 4 ! α 4 − 1 6 ! α 6 + ⋯ \cos \alpha=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}) !} \alpha^{2 \mathrm{k}}=1-\frac{1}{2 !} \alpha^2+\frac{1}{4 !} \alpha^4-\frac{1}{ 6 !} \alpha^6+\cdotscosa=k=0( 2k ) !(1)ka2 k=12!1a2+4!1a46!1a6+ sin ⁡ α = ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! α 2 k + 1 = α − 1 3 ! α 3 + 1 5 ! α 5 − 1 7 ! α 7 + ⋯ \sin \alpha=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+ 1) !} \alpha^{2 \mathrm{k}+1}=\alpha-\frac{1}{3 !} \alpha^3+\frac{1}{5 !} \alpha^5-\ frac{1}{7 !} \alpha^7+\cdotssina=k=0( 2 k+1)!(1)ka2k + 1 _=a3!1a3+5!1a57!1a7+ Therefore, the property isi 2 = − 1 i^2=-1i2=−1 . _
At the same time, it can be seen thata = a 2 + b 2 cos ⁡ α a=\sqrt{a^2+b^2}\cos \alphaa=a2+b2 cosαb = a 2 + b 2 sin ⁡ α b=\sqrt{a^2+b^2}\sin \alphab=a2+b2 sinα ,ifa + ib = a 2 + b 2 cos ⁡ α + ia 2 + b 2 sin ⁡ α a+ib=\sqrt{a^2+b^2}\cos \alpha+i\sqrt{a ^2+b^2}\sin \lighta+ib=a2+b2 cosa+ia2+b2 sinα , so the scaling isa + ib = a 2 + b 2 exp ⁡ ( i α ) a+ib=\sqrt{a^2+b^2}\exp(i\alpha)a+ib=a2+b2 exp(iα)

- Unit hyperbola x 2 − y 2 = 1 x^2-y^2=1x2y2=1

Define the hyperbolic complex unit jj on the unit hyperbolaj , the corresponding area isα 2 \frac{\alpha}{2}2a, the corresponding complex number is cosh ⁡ α + j sinh ⁡ α \cosh \alpha+j \sinh \alphacosha+jbornα , exponential formexp ⁡ ( j α ) = cosh ⁡ α + j sinh ⁡ α \exp(j\alpha)=\cosh \alpha+j \sinh \alphaexp(jα)=cosha+jbornα , according to cosh ⁡ \coshin Section 1coshsinh ⁡ \sinhsinh 的展开形式, exp ⁡ ( j α ) = 1 + j α + 1 2 ! j 2 α 2 + 1 3 ! j 3 α 3 + 1 4 ! j 4 α 4 + ⋯ \exp(j\alpha)=1+j\alpha+\frac{1}{2!}j^2\alpha^2+\frac{1}{3!}j^3\alpha^3+\frac{1}{4!}j^4\alpha^4+\cdots exp(jα)=1+j a+2!1j2 a2+3!1j3 a3+4!1j4 a4+ cosh ⁡ α = 1 + α 2 2 ! + α 4 4 ! + α 6 6 ! + ⋯ \cosh \alpha=1+\frac{\alpha^2}{2 !}+\frac{\alpha^4}{4 !}+\frac{\alpha^6}{6 !}+\cdots cosha=1+2!a2+4!a4+6!a6+ sinh ⁡ α = α + α 3 3 ! + α 5 5 ! + α 7 7 ! + ⋯ ⋯ \sinh \alpha=\alpha+\frac{\alpha^3}{3 !}+\frac{\alpha^5}{5 !}+\frac{\alpha^7}{7 !}+\cdots \cdots borna=a+3!a3+5!a5+7!a7+... Therefore, the property isj 2 = 1 j^2=1j2=1

同时可知, a cosh ⁡ α = b sinh ⁡ α = a 2 − b 2 cosh ⁡ 2 α − sinh ⁡ 2 α = a 2 − b 2 , if  a > b ,   a > 0 \frac{a}{\cosh \alpha}=\frac{b}{\sinh \alpha}=\frac{\sqrt {a^2-b^2}}{\sqrt {\cosh^2 \alpha-\sinh^2 \alpha}}=\sqrt {a^2-b^2},\quad \text{if} ~a>b, ~a>0 coshaa=bornab=cosh2aborn2a a2b2 =a2b2 ,if a>b, a>0 Considering the other three directions, there isa = ∣ a 2 − b 2 ∣ cosh ⁡ α , b = ∣ a 2 − b 2 ∣ sinh ⁡ α a=\sqrt{|a^2-b^2|} \cosh \alpha, ~ b=\sqrt{|a^2-b^2|}\sinh \alphaa=a2b2 cosha b =a2b2 bornα is scaled toa + jb = ∣ a 2 − b 2 ∣ exp ⁡ ( j α ) a+jb=\sqrt{|a^2-b^2|}\exp(j\alpha)a+jb=a2b2 exp(jα)

- unit double vertical bar x 2 = 1 x^2=1x2=1

A point on the right branch is defined as 1 + ϵ α 1+\epsilon\alpha1+ϵ α , the corresponding area is1 2 α \frac{1}{2}\alpha21α ,ϵ \epsilonϵ is called a dual even number

insert image description here
To make it also have a corresponding version in exponential form, exp ⁡ ( ϵ α ) = 1 + ϵ α \exp(\epsilon\alpha)=1+\epsilon \alphaexp ( ϵ α )=1+ϵ α , then the corresponding Taylor expansion shows that onceϵ 2 = 0 \epsilon^2=0ϵ2=0 , the above formula holds.

Then the even number is defined as ϵ ≠ 0 \epsilon \neq 0ϵ=0 andϵ 2 = 0 \epsilon^2=0ϵ2=0

ϵ ( a + ϵ b ) = a ϵ \epsilon (a+\epsilon b) = a\epsilonϵ ( a+ϵb)=a ϵ , projected to the abscissa and then rotated 90 degrees counterclockwise

The value a + ε b = ∣ a ∣ exp ⁡ ( j α ) a+\varepsilon b=|a|\exp(j\alpha) .a+εb=aexp(jα)

- Modulo: the root sign times itself by its conjugate

Why are the specific definitions of moduli different in the three figures? This is because the defined energy functions are different on the three same graphs.

Note:

Reference: Bilibili Fengzhuyunmo
https://www.bilibili.com/video/BV1xp4y1v7cw/?vd_source=5138fcb56aada2b6f1c51dfff686251a

https://baike.baidu.com/item/%E5%8F%8C%E6%9B%B2%E6%AD%A3%E5%BC%A6%E5%87%BD%E6%95%B0/4395524?fromtitle=sinh&fromid=1965202&fr=aladdin

https://zhuanlan.zhihu.com/p/444445404

Guess you like

Origin blog.csdn.net/weixin_44382195/article/details/127328953