Letter 1 from a communications engineer to his son: electricity and matter

Author: John Mills

 


Dear Son:

 

 

       You are interested in wireless telephony and have asked me to explain this to you. I'll do this in the most concise and convenient way I can come up with. This is the simplest explanation I can give, but enough to make you build a wireless phone and use it all the time, and enough to understand how the big commercial wireless phones you'll hear about work.

 

 

       I will write you a series of letters introducing concepts that are very important in the field of radio today, as well as important concepts that you may have to know if you intend to continue to follow the rapid development of radio technology in the future. You will find that there are some letters that you need to read and study again. There are several of these letters that need to be read again, and you should postpone the second reading until you have finished reading the letters that interest you most. I'll flag these letters so you know to ignore them for now.

 

 

       All of these letters will be written as if I was talking to you because I rarely draw schematics in my letters. There is a letter that will tell you how to do the experiment yourself. It will be the funniest of all letters. You'll find many books that tell you how radio receivers work and function, but very few (except some for graduate students) will tell you how to do the experiments yourself. However, don't start experimenting on your own right after reading this letter, you need to be very familiar with the concepts introduced in the other letters.

 

 

       What is a radio receiver? Copper wire, tin foil, glass dish, mica sheet, metal and wood. Where does a radio receiver get its power to work - that is, where does the "energy" that drives it come from? from batteries or generators. You already know a lot about this, but what is the real reason we can send and receive messages using copper wires, metal disks, triodes, quartz crystals, and batteries ?

 

 

       原因在于,上面提到的所有这些物体都由微小(太微小以至于看不见)的粒子组成——我们可以称它们为带电的微粒。这样带电的微粒只有两种,而我们现在最好立刻给它们取个恰当的名称,以便节约时间。一种带电微粒叫电子(electron),而另一种叫质子(proton)。它们有什么区别?他们的大小很可能不一样,但是我们还不是很清楚他们的具体尺寸。他们的惰性(laziness)的区别非常大。一个比另一个懒惰1845倍。也就是说,前者的惯性(inertia)是后者的1845倍。让更懒惰的粒子动起来更困难,而一旦它动起来后,要让它停下或者改变方向,也同样更困难。质子有更大的惯性。电子更容易启动和停下。

 

 

       其它方面它们还有区别吗?它们的行为方式不一样。质子不喜欢和其它质子交往,而是非常喜欢电子。电子也一样,喜欢和质子在一起,而不喜欢与其它电子交往。电子总是喜欢靠近质子。两个微粒——当一个是质子而另一个是电子时——成双成对,但三个微粒总是会发生拥挤和推搡。

 

 

       对质子来说,与哪一个电子作伴没区别,只要伙伴是电子而不是质子。就我们所知的而言,所有的电子都很相似,质子也是如此。这意味着我们这个世界的所有材料或者物质都是由这两种构造块组成(译者注:作者没有提到中子),而属于每个种类的所有构造块都非常相似。当然,你一定不能将这些构造块想成砖块,因为我们不知道它们的外形。

 

 

       而且,你不能将它们想成砖块还有另一个理由,即当你用砖块建造一座房子时,每一块砖都必须紧贴着被安置在另一块砖上。而在电子之间或者质子之间或者电子和质子之间通常保持着非常大的间隔距离。由于彼此之间有着足够大的间隔空间,因此其它许多电子或者质子能够被塞进来——只要它们愿意离其它微粒这么近。

 

 

有       时候它们的确靠得很近。我可以告诉你这是怎么做到的,只要你想象有四个小男孩在玩追逐抓人游戏。假设TomDick两个人彼此都不喜欢和对方玩,总是尽可能离得远远的。现在再假设BillSam两个人只要他们有办法,也彼此不和对方玩,但是只要有可能,两个人都愿意和Tom或者Dick玩。现在再假设TomBill都看到了对方;他们一起跑向对方,开始某种游戏互动。但是同时Sam看到了Tom,因此也跑过去和Tom在一起,尽管Bill也在那里。同时,Dick看到了BillSam在一起奔跑,而由于他们俩都是他喜欢的玩伴,他也跟了过去。很快他们四个人都汇合在一起玩一个大型的游戏;尽管有些男孩彼此都不喜欢和对方玩。

 

 

       任何时候只要有一群电子和质子在一起玩,就出现了一个所谓的原子。一共有大概90种不同的给电子和质子玩的游戏,于是就有了90种不同的原子。这些游戏的区别在于在一起玩的电子和质子的数量,以及它们的排列方式不一样。如果几个原子合在一起,就能形成更大的游戏。于是就出现了分子(molecule)。这个世界上有多少种实体,就有多少种分子。只有很多分子聚在一起,才能形成肉眼看得见的东西,因为即便是最大的分子,比如淀粉分子,也因为过于小,因此即便有最好的显微镜,人们也看不见。

 

Guess you like

Origin http://43.154.161.224:23101/article/api/json?id=325359043&siteId=291194637
Recommended