一: 基础篇复习 网络基础: 上篇

TCP三次握手

三次握手过程:

客户端——发送带有SYN标志的数据包——服务端 一次握手 Client进入syn_sent状态

服务端——发送带有SYN/ACK标志的数据包——客户端 二次握手 服务端进入syn_rcvd

客户端——发送带有ACK标志的数据包——服务端 三次握手 连接就进入Established状态

为什么三次:

主要是为了建立可靠的通信信道,保证客户端与服务端同时具备发送、接收数据的能力

为什么两次不行?

1、防止已失效的请求报文又传送到了服务端,建立了多余的链接,浪费资源

2、 两次握手只能保证单向连接是畅通的。(为了实现可靠数据传输, TCP 协议的通信双方, 都必须维 护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方 相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤;如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认)

TCP四次挥手过程

四次挥手过程:

客户端——发送带有FIN标志的数据包——服务端,关闭与服务端的连接 ,客户端进入FIN-WAIT-1状态

服务端收到这个 FIN,它发回⼀ 个 ACK,确认序号为收到的序号加1,服务端就进入了CLOSE-WAIT状态

服务端——发送⼀个FIN数据包——客户端,关闭与客户端的连接,客户端就进入FIN-WAIT-2状态

客户端收到这个 FIN,发回 ACK 报⽂确认,并将确认序号设置为收到序号加1,TIME-WAIT状态

为什么四次:

因为需要确保客户端与服务端的数据能够完成传输。

CLOSE-WAIT:

这种状态的含义其实是表示在等待关闭

TIME-WAIT:

为了解决网络的丢包和网络不稳定所带来的其他问题,确保连接方能在时间范围内,关闭自己的连接

如何查看TIME-WAIT状态的链接数量?

netstat -an |grep TIME_WAIT|wc -l 查看连接数等待time_wait状态连接数

为什么会TIME-WAIT过多?解决方法是怎样的?

可能原因: 高并发短连接的TCP服务器上,当服务器处理完请求后立刻按照主动正常关闭连接

解决: 负载均衡服务器;Web服务器首先关闭来自负载均衡服务器的连接

1、OSI与TCP/IP 模型

OSI七层:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层

TCP/IP五层:物理层、数据链路层、网络层、传输层、应用层

2、常见网络服务分层

应用层:HTTP、SMTP、DNS、FTP

传输层:TCP 、UDP

网络层:ICMP 、IP、路由器、防火墙

数据链路层:网卡、网桥、交换机

物理层:中继器、集线器

3、TCP与UDP区别及场景

类型 特点 性能 应用过场景 首部字节
TCP 面向连接、可靠、字节流 传输效率慢、所需资源多 文件、邮件传输 20-60
UDP 无连接、不可靠、数据报文段 传输效率快、所需资源少 语音、视频、直播 8个字节

基于TCP的协议: HTTP、FTP、SMTP

基于UDP的协议: RIP、DNS、SNMP

4、TCP滑动窗口,拥塞控制

TCP通过: 应用数据分割、对数据包进行编号、校验和、流量控制、拥塞控制、超时重传等措施保证数据的可靠传输;

拥塞控制目的: 为了防止过多的数据注入到网络中,避免网络中的路由器、链路过载

拥塞控制过程: TCP维护一个拥塞窗口,该窗口随着网络拥塞程度动态变化,通过慢开始、拥塞避免等算法减少网络拥塞的发生。

5、TCP粘包原因和解决方法

TCP粘包是指:发送方发送的若干包数据到接收方接收时粘成一包

发送方原因:

TCP默认使用Nagle算法(主要作用:减少网络中报文段的数量):

收集多个小分组,在一个确认到来时一起发送、导致发送方可能会出现粘包问题

接收方原因:

TCP将接收到的数据包保存在接收缓存里,如果TCP接收数据包到缓存的速度大于应用程序从缓存中读取数据包的速度,多个包就会被缓存,应用程序就有可能读取到多个首尾相接粘到一起的包。

解决粘包问题:

最本质原因在与接收对等方无法分辨消息与消息之间的边界在哪,通过使用某种方案给出边界,例如:

  • 发送定长包。每个消息的大小都是一样的,接收方只要累计接收数据,直到数据等于一个定长的数值就将它作为一个消息。
  • 包尾加上\r\n标记。FTP协议正是这么做的。但问题在于如果数据正文中也含有\r\n,则会误判为消息的边界。
  • 包头加上包体长度。包头是定长的4个字节,说明了包体的长度。接收对等方先接收包体长度,依据包体长度来接收包体。

6、TCP、UDP报文格式

TCP报文格式:

源端口号和目的端口号

用于寻找发端和收端应用进程。这两个值加上ip首部源端ip地址和目的端ip地址唯一确定一个tcp连接。

序号字段:

序号用来标识从T C P发端向T C P收端发送的数据字节流,它表示在这个报文段中的的第一个数据字节。如果将字节流看作在两个应用程序间的单向流动,则 T C P用序号对每个字节进行计数。序号是32 bit的无符号数,序号到达 2^32-1后又从0开始。

  当建立一个新的连接时,SYN标志变1。序号字段包含由这个主机选择的该连接的初始序号ISN(Initial Sequence Number)。该主机要发送数据的第一个字节序号为这个ISN加1,因为SYN标志消耗了一个序号

确认序号

既然每个传输的字节都被计数,确认序号包含发送确认的一端所期望收到的下一个序号。因此,确认序号应当是上次已成功收到数据字节序号加 1。只有ACK标志为 1时确认序号字段才有效。发送ACK无需任何代价,因为 32 bit的确认序号字段和A C K标志一样,总是T C P首部的一部分。因此,我们看到一旦一个连接建立起来,这个字段总是被设置, ACK标志也总是被设置为1。TCP为应用层提供全双工服务。这意味数据能在两个方向上独立地进行传输。因此,连接的每一端必须保持每个方向上的传输数据序号。

首都长度

首部长度给出首部中 32 bit字的数目。需要这个值是因为任选字段的长度是可变的。这个字段占4 bit,因此T C P最多有6 0字节的首部。然而,没有任选字段,正常的长度是 2 0字节。

标志字段:在T C P首部中有 6个标志比特。它们中的多个可同时被设置为1.   URG紧急指针(u rgent pointer)有效   ACK确认序号有效。   PSH接收方应该尽快将这个报文段交给应用层。   RST重建连接。   SYN同步序号用来发起一个连接。这个标志和下一个标志将在第 1 8章介绍。   FIN发端完成发送任务。

窗口大小

T C P的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端期望接收的字节。窗口大小是一个 16 bit字段,因而窗口大小最大为 65535字节。

检验和:

检验和覆盖了整个的 T C P报文段:T C P首部和T C P数据。这是一个强制性的字段,一定是由发端计算和存储,并由收端进行验证。

紧急指针

只有当URG标志置1时紧急指针才有效。紧急指针是一个正的偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。 T C P的紧急方式是发送端向另一端发送紧急数据的一种方式。

选项

最常见的可选字段是最长报文大小,又称为 MSS (Maximum Segment Size)。每个连接方通常都在通信的第一个报文段(为建立连接而设置 S Y N标志的那个段)中指明这个选项。它指明本端所能接收的最大长度的报文段。

UDP报文格式:

端口号

用来表示发送和接受进程。由于 I P层已经把I P数据报分配给T C P或U D P(根据I P首部中协议字段值),因此T C P端口号由T C P来查看,而 U D P端口号由UDP来查看。T C P端口号与UDP端口号是相互独立的。

长度

UDP长度字段指的是UDP首部和UDP数据的字节长度。该字段的最小值为 8字节(发送一份0字节的UDP数据报是 O K)。

检验和

UDP检验和是一个端到端的检验和。它由发送端计算,然后由接收端验证。其目的是为了发现UDP首部和数据在发送端到接收端之间发生的任何改动。

IP报文格式: 普通的IP首部长为20个字节,除非含有可选项字段。

4位版本

目前协议版本号是4,因此IP有时也称作IPV4.

4位首部长度

首部长度指的是首部占32bit字的数目,包括任何选项。由于它是一个4比特字段,因此首部长度最长为60个字节。

服务类型(TOS)

服务类型字段包括一个3bit的优先权字段(现在已经被忽略),4bit的TOS子字段和1bit未用位必须置0。4bit的TOS分别代表:最小时延,最大吞吐量,最高可靠性和最小费用。4bit中只能置其中1比特。如果所有4bit均为0,那么就意味着是一般服务。

总长度

总长度字段是指整个IP数据报的长度,以字节为单位。利用首部长度和总长度字段,就可以知道IP数据报中数据内容的起始位置和长度。由于该字段长16bit,所以IP数据报最长可达65535字节。当数据报被分片时,该字段的值也随着变化。

标识字段

标识字段唯一地标识主机发送的每一份数据报。通常每发送一份报文它的值就会加1。

生存时间

TTL(time-to-live)生存时间字段设置了数据报可以经过的最多路由器数。它指定了数据报的生存时间。TTL的初始值由源主机设置(通常为 3 2或6 4),一旦经过一个处理它的路由器,它的值就减去 1。当该字段的值为 0时,数据报就被丢弃,并发送 ICMP 报文通知源主机。

首部检验和

首部检验和字段是根据 I P首部计算的检验和码。它不对首部后面的数据进行计算。 ICMP、IGMP、UDP和TCP在它们各自的首部中均含有同时覆盖首部和数据检验和码。

以太网报文格式:

目的地址和源地址:

是指网卡的硬件地址(也叫MAC 地址),长度是48 位,是在网卡出厂时固化的。

数据:

以太网帧中的数据长度规定最小46 字节,最大1500 字节,ARP 和RARP 数据包的长度不够46 字节,要在后面补填充位。最大值1500 称为以太网的最大传输单元(MTU),不同的网络类型有不同的MTU,如果一个数据包从以太网路由到拨号链路上,数据包度大于拨号链路的MTU了,则需要对数据包进行分片fragmentation)。ifconfig 命令的输出中也有“MTU:1500”。注意,MTU 个概念指数据帧中有效载荷的最大长度,不包括帧首部的长度。

Guess you like

Origin juejin.im/post/7047329157792923661