【三次握手、四次挥手流程】及【长短链接区别】

常见名词解释:

SYNsynchronous,建立联机) 、ACKacknowledgement,确认)、PSH(push,传送)、FINfinish,结束)、RST(reset,重置)、URG(urgent,紧急)、Sequence number(顺序号码)、Acknowledge number(确认号码)
 

一、详述三次握手及四次挥手流程

1.三次握手

(1)基本流程

首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源。

Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了。

(2)具体细节:(握手)

最初两端的TCP进程都处于CLOSED关闭状态,A主动打开连接,而B被动打开连接。(A、B关闭状态CLOSED——B收听状态LISTEN——A同步已发送状态SYN-SENT——B同步收到状态SYN-RCVD——A、B连接已建立状态ESTABLISHED

  • B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的连接请求。然后服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。若有,则作出响应。
  • 1)第一次握手:A的TCP客户进程也是首先创建传输控制块TCB,然后向B发出连接请求报文段,(首部的同步位SYN=1初始序号seq=x),(SYN=1的报文段不能携带数据)但要消耗掉一个序号,此时TCP客户进程进入SYN-SENT(同步已发送)状态。
  • 2)第二次握手:B收到连接请求报文段后,如同意建立连接,则向A发送确认,在确认报文段中(SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y),测试TCP服务器进程进入SYN-RCVD(同步收到)状态;
  • 3)第三次握手:TCP客户进程收到B的确认后,要向B给出确认报文段(ACK=1,确认号ack=y+1,序号seq=x+1)(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。TCP连接已经建立,A进入ESTABLISHED(已建立连接)。
  • 当B收到A的确认后,也进入ESTABLISHED状态。

(3)总结三次握手过程

  • 第一次握手:起初两端都处于CLOSED关闭状态,Client将标志位SYN置为1,随机产生一个值seq=x,并将该数据包发送给Server,Client进入SYN-SENT状态,等待Server确认;
  • 第二次握手:Server收到数据包后由标志位SYN=1得知Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=x+1,随机产生一个值seq=y,并将该数据包发送给Client以确认连接请求,Server进入SYN-RCVD状态,此时操作系统为该TCP连接分配TCP缓存和变量;
  • 第三次握手:Client收到确认后,检查ack是否为x+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=y+1,并且此时操作系统为该TCP连接分配TCP缓存和变量,并将该数据包发送给Server,Server检查ack是否为y+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client和Server就可以开始传输数据。

起初A和B都处于CLOSED状态——B创建TCB,处于LISTEN状态,等待A请求——A创建TCB,发送连接请求(SYN=1,seq=x),进入SYN-SENT状态——B收到连接请求,向A发送确认(SYN=ACK=1,确认号ack=x+1,初始序号seq=y),进入SYN-RCVD状态——A收到B的确认后,给B发出确认(ACK=1,ack=y+1,seq=x+1),A进入ESTABLISHED状态——B收到A的确认后,进入ESTABLISHED状态。

TCB传输控制块Transmission Control Block,存储每一个连接中的重要信息,如TCP连接表,到发送和接收缓存的指针,到重传队列的指针,当前的发送和接收序号。

(4)为什么A还要发送一次确认呢?可以二次握手吗?

答:主要为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。如A发出连接请求,但因连接请求报文丢失而未收到确认,于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,A工发出了两个连接请求报文段,其中第一个丢失,第二个到达了B,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达B,此时B误认为A又发出一次新的连接请求,于是就向A发出确认报文段,同意建立连接,不采用三次握手,只要B发出确认,就建立新的连接了,此时A不理睬B的确认且不发送数据,则B一致等待A发送数据,浪费资源。

(5)Server端易受到SYN攻击?

服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击,SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。

防范SYN攻击措施:降低主机的等待时间使主机尽快的释放半连接的占用,短时间受到某IP的重复SYN则丢弃后续请求

2.四次挥手

(1)基本流程

假设Client端发起中断连接请求,也就是发送FIN报文。Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据。所以你先发送ACK,"告诉Client端,你的请求我收到了,但是我还没准备好,请继续你等我的消息"。

这个时候Client端就进入FIN_WAIT状态,继续等待Server端的FIN报文。当Server端确定数据已发送完成,则向Client端发送FIN报文,"告诉Client端,好了,我这边数据发完了,准备好关闭连接了"。

Client端收到FIN报文后,"就知道可以关闭连接了,但是他还是不相信网络,怕Server端不知道要关闭,所以发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。",Server端收到ACK后,"就知道可以断开连接了"。

Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了。

Ok,TCP连接就这样关闭了!

 (2)具体细节(挥手)

数据传输结束后,通信的双方都可释放连接,A和B都处于ESTABLISHED状态。(A、B连接建立状态ESTABLISHED——A终止等待1状态FIN-WAIT-1——B关闭等待状态CLOSE-WAIT——A终止等待2状态FIN-WAIT-2——B最后确认状态LAST-ACK——A时间等待状态TIME-WAIT——B、A关闭状态CLOSED

  • 1)A的应用进程先向其TCP发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN-WAIT-1(终止等待1)状态,等待B的确认。
  • 2)B收到连接释放报文段后即发出确认报文段,(ACK=1,确认号ack=u+1,序号seq=v),B进入CLOSE-WAIT(关闭等待)状态,此时的TCP处于半关闭状态,A到B的连接释放。
  • 3)A收到B的确认后,进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文段。
  • 4)B没有要向A发出的数据,B发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),B进入LAST-ACK(最后确认)状态,等待A的确认。
  • 5)A收到B的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),A进入TIME-WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,A才进入CLOSED状态。

(3)总结四次挥手过程

起初A和B处于ESTABLISHED状态——A发出连接释放报文段并处于FIN-WAIT-1状态——B发出确认报文段且进入CLOSE-WAIT状态——A收到确认后,进入FIN-WAIT-2状态,等待B的连接释放报文段——B没有要向A发出的数据,B发出连接释放报文段且进入LAST-ACK状态——A发出确认报文段且进入TIME-WAIT状态——B收到确认报文段后进入CLOSED状态——A经过等待计时器时间2MSL后,进入CLOSED状态

(4)为什么A在TIME-WAIT状态必须等待2MSL的时间?

MSL最长报文段寿命Maximum Segment Lifetime,MSL=2

两个理由:1)保证A发送的最后一个ACK报文段能够到达B2)防止“已失效的连接请求报文段”出现在本连接中。

  • 1)这个ACK报文段有可能丢失,使得处于LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认,B超时重传FIN+ACK报文段,而A能在2MSL时间内收到这个重传的FIN+ACK报文段,接着A重传一次确认,重新启动2MSL计时器,最后A和B都进入到CLOSED状态,若A在TIME-WAIT状态不等待一段时间,而是发送完ACK报文段后立即释放连接,则无法收到B重传的FIN+ACK报文段,所以不会再发送一次确认报文段,则B无法正常进入到CLOSED状态。
  • 2)A在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。

(5)为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

(6)为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。

二、长短链接区别

http协议和tcp/ip 协议的关系

(1)http是应用层协议,tcp协议是传输层协议,ip协议是网络协议。
(2)IP协议主要解决网络路由和寻址问题
(3)tcp协议主要解决在IP层协议之上,如何可靠的传输数据,即接收端收到的数据包的大小和顺序,和发送端保持一致。tcp协议是可靠的面相连接的。

1.http协议是无状态的,指的是http协议对于事务处理没有记忆功能,客户端向服务端请求完数据之后,服务端不知道客户端是什么状态。

2.http的长连接和短连接,本质上是tcp层的长连接和短连接:

http 1.0 默认使用短连接,http 1.1 默认使用长连接,在使用的http协议,在响应头会加上 Connection:keep-alive

3. RPC比http请求快的原因:http使用http协议,rpc使用tcp协议,比http少了应用层,表示层,会话层,这3层,rpc使用长连接,而长连接比短连接更节省资源,效率更高(每个连接的建立和释放都是需要资源和时间的)。
 

TCP短连接与长连接

TCP短连接

TCP短连接,client向server发起连接请求,server接到请求,然后双方建立连接。client向server 发送消息,server回应client,然后一次读写就完成了,这时候双方任何一个都可以发起close操作,不过一般都是client先发起 close操作。因为一般的server不会回复完client后立即关闭连接的,当然不排除有特殊的情况。从上面的描述看,短连接一般只会在client/server间传递一次读写操作。短连接的优点是:管理起来比较简单,存在的连接都是有用的连接,不需要额外的控制手段。

TCP长连接

长连接,client向server发起连接,server接受client连接,双方建立连接。Client与server完成一次读写之后,它们之间的连接并不会主动关闭,后续的读写操作会继续使用这个连接。

TCP保活功能,保活功能主要为服务器应用提供,服务器应用希望知道客户主机是否崩溃,从而可以代表客户使用资 源。如果客户已经消失,使得服务器上保留一个半开放的连接,而服务器又在等待来自客户端的数据,则服务器将应远等待客户端的数据,保活功能就是试图在服务器端检测到这种半开放的连接。如果一个给定的连接在两小时内没有任何的动作,则服务器就向客户发一个探测报文段。客户主机必须处于以下4个状态之一:

1.客户主机依然正常运行,并从服务器可达。客户的TCP响应正常,而服务器也知道对方是正常的,服务器在两小时后将保活定时器复位。

2.客户主机已经崩溃,并且关闭或者正在重新启动。在任何一种情况下,客户的TCP都没有响应。服务端将不能收到对探测的响应,并在75秒后超时。服务器总共发送10个这样的探测 ,每个间隔75秒。如果服务器没有收到一个响应,它就认为客户主机已经关闭并终止连接。

3.客户主机崩溃并已经重新启动。服务器将收到一个对其保活探测的响应,这个响应是一个复位,使得服务器终止这个连接。

4.客户机正常运行,但是服务器不可达,这种情况与2类似,TCP能发现的就是没有收到探查的响应。

从上面可以看出,TCP保活功能主要为探测长连接的存活状况,不过这里存在一个问题,存活功能的探测周期太长,还有就是它只是探测TCP连接的存活,属于比较斯文的做法,遇到恶意的连接时,保活功能就不够使了。

在长连接的应用场景下,client端一般不会主动关闭它们之间的连接,Client与server之间的连接如果一直不关闭的话,会存在一个问 题,随着客户端连接越来越多,server早晚有扛不住的时候,这时候server端需要采取一些策略,如关闭一些长时间没有读写事件发生的连接,这样可以避免一些恶意连接导致server端服务受损;如果条件再允许就可以以客户端机器为颗粒度,限制每个客户端的最大长连接数,这样可以完全避免某个蛋疼的客户端连累后端服务。

长连接和短连接的产生在于client和server采取的关闭策略,具体的应用场景采用具体的策略,没有十全十美的选择,只有合适的选择。
 

HTTP长连接与短连接

长连接:client方与server方先建立连接,连接建立后不断开,然后再进行报文发送和接收。

这种方式下由于通讯连接一直存在。此种方式常用于P2P通信。

短连接:Client方与server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。

此方式常用于一点对多点通讯。C/S通信。

长连接和短连接异同
长连接:长连接多用于操作频繁,点对点的通讯,而且连接数不能太多的情况。

每个TCP连接的建立都需要三次握手,每个TCP连接的断开要四次握手。

如果每次操作都要建立连接然后再操作的话处理速度会降低,所以每次操作后,下次操作时直接发送数据就可以了,不用再建立TCP连接。例如:数据库的连接用长连接,如果用短连接频繁的通信会造成socket错误,频繁的socket创建也是对资源的浪费。

短连接:web网站的http服务一般都用短连接。因为长连接对于服务器来说要耗费一定的资源。像web网站这么频繁的成千上万甚至上亿客户端的连接用短连接更省一些资源。试想如果都用长连接,而且同时用成千上万的用户,每个用户都占有一个连接的话,可想而知服务器的压力有多大。所以并发量大,但是每个用户又不需频繁操作的情况下需要短连接。
 

Guess you like

Origin blog.csdn.net/sinat_33718563/article/details/119728594