Prove that ¬ ∃ x (F (x) ∧ H (x)), ∀ x (G (x) → H (x))

前提: ¬ ∃ x ( F ( x ) ∧ H ( x ) ) , ∀ x ( G ( x ) → H ( x ) ) \lnot \exist x(F(x)\land H(x)),\forall x(G(x)\rightarrow H(x)) ¬x(F(x)H(x)),x(G(x)H(x))
结论: ∀ x ( G ( x ) → ¬ F ( x ) ) \forall x(G(x)\rightarrow \lnot F(x)) x(G(x)¬F(x))

(1). ∀ x ( G ( x ) → H ( x ) ) \forall x(G(x)\rightarrow H(x)) x(G(x)H(x))
(2). G ( c ) G(c) G(c)
(3). H ( c ) H(c) H(c)
(4). ¬ ∃ x ( F ( x ) ∧ H ( x ) ) \lnot \exist x(F(x)\land H(x)) ¬x(F(x)H(x))
(5). ¬ F ( c ) \lnot F(c) ¬F(c)
(6). G ( c ) → ¬ F ( c ) G(c)\rightarrow \lnot F(c) G(c)¬F(c)
(7). ∀ x ( G ( x ) → ¬ F ( x ) ) \forall x(G(x)\rightarrow\lnot F(x)) x(G(x)¬F(x))

Guess you like

Origin blog.csdn.net/qq_41870170/article/details/114661588