UA MATH563 The Central Limit Theorem of the Mathematical Foundation of Probability Theory 22 The Portmanteau Theorem of Weak Convergence in Metric Probability Space

UA MATH563 The Central Limit Theorem of the Mathematical Foundation of Probability Theory 22 The Portmanteau Theorem of Weak Convergence in Metric Probability Space

Now we discuss weak convergence in the metric space, assuming (Ω, d) (\Omega,d)( Oh ,d ) is a metric space,(Ω, F, P) (\Omega,\mathcal{F},P)( Oh ,F,P ) is a probability space,X n, X X_n, XXn,X is defined inΩ \OmegaRandom variables on Ω , their distribution isμ n, μ \mu_n,\muμn,μ

Portmanteau's theorem
With regard to convergence in distribution, the following statements are equivalent:

  1. X n → d X X_n \to_d X XndX
  2. For any open set GGG lim inf ⁡ P ( X n ∈ G ) ≥ P ( X ∈ G ) \liminf P(X_n \in G) \ge P(X \in G) l i minfP(XnG)P(XG)
  3. For any closed set KKK lim sup ⁡ P ( X n ∈ K ) ≤ P ( X ∈ K ) \limsup P(X_n \in K) \le P(X \in K) l i msupP(XnK)P(XK)
  4. AA for any setA , ifP (X ∈ ∂ A) = 0 P(X \in \partial A) = 0P(XA)=0,则 lim ⁡ P ( X n ∈ A ) = P ( X ∈ A ) \lim P(X_n \in A) = P(X \in A) limP(XnA)=P(XA)

Regarding weak convergence, the following statements are equivalent:

  1. μ n ⇒ μ \ mu_n \ Rightarrow \ mu μnμ
  2. For any open set GGGlim inf ⁡ μ n (G) ≥ μ (G) \ liminf \ mu_n (G) \ ge \ mu (G)l i minfμn(G)μ ( G )
  3. For any closed set KKKlim soup ⁡ μ n (K) ≤ μ (K) \ limsup \ mu_n (K) \ le \ mu (K)l i msupμn(K)μ ( K )
  4. AA for any setA , ifμ (∂ A) = 0 \mu(\partial A) = 0μ ( A )=0,则 μ ( A n ) → μ ( A ) \mu(A_n) \to \mu(A) μ ( An)μ ( A )

The path of proof is 1 ⇒ 3 ⇒ 2 ⇒ 4 ⇒ 1 1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 4 \Rightarrow 113241. Post a Durrett certificate

Insert picture description here

Guess you like

Origin blog.csdn.net/weixin_44207974/article/details/112001558
Recommended