Codeforces Round #690 (Div. 3) E2. Close Tuples (hard version) Lucas combination number inverse element

outputstandard output
This is the hard version of this problem. The only difference between the easy and hard versions is the constraints on k and m. In this version of the problem, you need to output the answer by modulo 109+7.

You are given a sequence a of length n consisting of integers from 1 to n. The sequence may contain duplicates (i.e. some elements can be equal).

Find the number of tuples of m elements such that the maximum number in the tuple differs from the minimum by no more than k. Formally, you need to find the number of tuples of m indices i1<i2<…<im, such that

max(ai1,ai2,…,aim)−min(ai1,ai2,…,aim)≤k.
For example, if n=4, m=3, k=2, a=[1,2,4,3], then there are two such triples (i=1,j=2,z=4 and i=2,j=3,z=4). If n=4, m=2, k=1, a=[1,1,1,1], then all six possible pairs are suitable.

As the result can be very large, you should print the value modulo 109+7 (the remainder when divided by 109+7).

Input
The first line contains a single integer t (1≤t≤2⋅105) — the number of test cases. Then t test cases follow.

The first line of each test case contains three integers n, m, k (1≤n≤2⋅105, 1≤m≤100, 1≤k≤n) — the length of the sequence a, number of elements in the tuples and the maximum difference of elements in the tuple.

The next line contains n integers a1,a2,…,an (1≤ai≤n) — the sequence a.

It is guaranteed that the sum of n for all test cases does not exceed 2⋅105.

Output
Output t answers to the given test cases. Each answer is the required number of tuples of m elements modulo 109+7, such that the maximum value in the tuple differs from the minimum by no more than k.

Example
inputCopy
4
4 3 2
1 2 4 3
4 2 1
1 1 1 1
1 1
1
10 4 3
5 6 1 3 2 9 8 1 2 4
outputCopy
2
6
1
20i
Wuhu, over! !
Sort the array first like easy, and then traverse from m to n each time to find the position greater than the minimum value of a[i]-k, so that I know the position of the two numbers whose difference is less than k. First take a[i] and then take any two of a[i] from the position of a[i]-k to a[i], which is converted into a problem of modulo a combination number.
Then paste a board for finding the inverse element of the combination number based on the Lucas theorem, and take off directly. =v=.

#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<assert.h>
using namespace std;
typedef long long ll;
const int maxn=3e5+5;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
ll a[maxn];
int maxx(int a,int b,int c){
    
    
	return max(a,max(b,c));
}
int minn(int a,int b,int c){
    
    
	return min(a,min(b,c));
}
ll f[maxn]; 
ll qpow(ll a,ll b){
    
    
	ll ans = 1,base = a;
	while(b){
    
    
		if(b&1) ans = ans * base % mod;
		base = base * base % mod;
		b>>=1; 
	}
	return ans;
}
void init(){
    
    
	f[0]=1;
	for(int i=1;i<=2e5;i++){
    
    
		f[i]=f[i-1]*i%mod;
	} 
}
ll cal(ll n,ll m){
    
    
	if(n<m) return 0; 
 	return 1ll*f[n]*qpow(f[m],mod-2)%mod*qpow(f[n-m],mod-2)%mod;
}
void solve(){
    
    
	ll t;
    cin>>t;
	init();
    while(t--)
    {
    
    
		ll n,m,k;
		cin>>n>>m>>k;
		for(ll i=1;i<=n;i++){
    
    
			cin>>a[i];
		}
		sort(a+1,a+1+n);
		int cnt=0;
		ll sum=0;
		for(ll i=m;i<=n;i++){
    
    
			int x=lower_bound(a+1,a+1+n,a[i]-k)-a;
			sum+=cal(i-x,m-1);
			sum=sum%mod;
		}
		cout<<sum%mod<<endl;
    }
}
int main()
{
    
    
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	solve();
	return 0;
}
 

Guess you like

Origin blog.csdn.net/qq_45891413/article/details/111278823