(2) Spring basics|What is SpringIOC|A brief look at Spring IOC

Last time I mentioned that Spring has two core components, IOC (Inversion of Control) and AOP (Aspect Oriented Programming), today I will talk about Spring's IOC

 

IOC: Inversion of Control.
       One way of saying: the dependency between objects is dynamically established by the container at runtime according to the configuration file.
       Another way of saying: the controller of the object is transferred to the external container, which is avoided. The code is entangled, the code is easier to be maintained, the coupling between the templates is reduced, and the
    IOC is easy to test. Inversion of control means that the class you designed is handed over to the container for control, rather than being controlled within the class, that is, control. Transferred from application code to external container


   Two ways to implement IOC:
      DI: Dependency Injection, the component does not do positioning query, only provides the corresponding method, the container creates the object, and calls the corresponding method to set the required component
      DL: Dependency Lookup dependency lookup, container creation Objects also provide callback interfaces and context for components, and when needed, they can find objects from the container through the interface and
    rely on them. Now they are not used too much. (EJB is used more. After the object is created, it is placed in the container.)
    
    IOC solves the problem of who creates the object-"Inversion of control
    DI solves the problem of how to establish the relationship between objects. ——"Dependency Injection


 The org.springframework.beans and org.springframework.context packages are the foundation of the IOC container. Spring is to be used. At least these two packages must exist.

 

SpringIOC core API

BeanFactory interface and container

BeanFactory is the Bean container in Spring and the core interface of IoC. It is mainly used to handle the initialization and configuration of Beans and establish dependencies between objects.

BeanFactory.java source code: 

/*
 * Copyright 2002-2019 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.beans.factory;

import org.springframework.beans.BeansException;
import org.springframework.core.ResolvableType;
import org.springframework.lang.Nullable;

/**
 * The root interface for accessing a Spring bean container.
 * This is the basic client view of a bean container;
 * further interfaces such as {@link ListableBeanFactory} and
 * {@link org.springframework.beans.factory.config.ConfigurableBeanFactory}
 * are available for specific purposes.
 *
 * <p>This interface is implemented by objects that hold a number of bean definitions,
 * each uniquely identified by a String name. Depending on the bean definition,
 * the factory will return either an independent instance of a contained object
 * (the Prototype design pattern), or a single shared instance (a superior
 * alternative to the Singleton design pattern, in which the instance is a
 * singleton in the scope of the factory). Which type of instance will be returned
 * depends on the bean factory configuration: the API is the same. Since Spring
 * 2.0, further scopes are available depending on the concrete application
 * context (e.g. "request" and "session" scopes in a web environment).
 *
 * <p>The point of this approach is that the BeanFactory is a central registry
 * of application components, and centralizes configuration of application
 * components (no more do individual objects need to read properties files,
 * for example). See chapters 4 and 11 of "Expert One-on-One J2EE Design and
 * Development" for a discussion of the benefits of this approach.
 *
 * <p>Note that it is generally better to rely on Dependency Injection
 * ("push" configuration) to configure application objects through setters
 * or constructors, rather than use any form of "pull" configuration like a
 * BeanFactory lookup. Spring's Dependency Injection functionality is
 * implemented using this BeanFactory interface and its subinterfaces.
 *
 * <p>Normally a BeanFactory will load bean definitions stored in a configuration
 * source (such as an XML document), and use the {@code org.springframework.beans}
 * package to configure the beans. However, an implementation could simply return
 * Java objects it creates as necessary directly in Java code. There are no
 * constraints on how the definitions could be stored: LDAP, RDBMS, XML,
 * properties file, etc. Implementations are encouraged to support references
 * amongst beans (Dependency Injection).
 *
 * <p>In contrast to the methods in {@link ListableBeanFactory}, all of the
 * operations in this interface will also check parent factories if this is a
 * {@link HierarchicalBeanFactory}. If a bean is not found in this factory instance,
 * the immediate parent factory will be asked. Beans in this factory instance
 * are supposed to override beans of the same name in any parent factory.
 *
 * <p>Bean factory implementations should support the standard bean lifecycle interfaces
 * as far as possible. The full set of initialization methods and their standard order is:
 * <ol>
 * <li>BeanNameAware's {@code setBeanName}
 * <li>BeanClassLoaderAware's {@code setBeanClassLoader}
 * <li>BeanFactoryAware's {@code setBeanFactory}
 * <li>EnvironmentAware's {@code setEnvironment}
 * <li>EmbeddedValueResolverAware's {@code setEmbeddedValueResolver}
 * <li>ResourceLoaderAware's {@code setResourceLoader}
 * (only applicable when running in an application context)
 * <li>ApplicationEventPublisherAware's {@code setApplicationEventPublisher}
 * (only applicable when running in an application context)
 * <li>MessageSourceAware's {@code setMessageSource}
 * (only applicable when running in an application context)
 * <li>ApplicationContextAware's {@code setApplicationContext}
 * (only applicable when running in an application context)
 * <li>ServletContextAware's {@code setServletContext}
 * (only applicable when running in a web application context)
 * <li>{@code postProcessBeforeInitialization} methods of BeanPostProcessors
 * <li>InitializingBean's {@code afterPropertiesSet}
 * <li>a custom init-method definition
 * <li>{@code postProcessAfterInitialization} methods of BeanPostProcessors
 * </ol>
 *
 * <p>On shutdown of a bean factory, the following lifecycle methods apply:
 * <ol>
 * <li>{@code postProcessBeforeDestruction} methods of DestructionAwareBeanPostProcessors
 * <li>DisposableBean's {@code destroy}
 * <li>a custom destroy-method definition
 * </ol>
 *
 * @author Rod Johnson
 * @author Juergen Hoeller
 * @author Chris Beams
 * @since 13 April 2001
 * @see BeanNameAware#setBeanName
 * @see BeanClassLoaderAware#setBeanClassLoader
 * @see BeanFactoryAware#setBeanFactory
 * @see org.springframework.context.ResourceLoaderAware#setResourceLoader
 * @see org.springframework.context.ApplicationEventPublisherAware#setApplicationEventPublisher
 * @see org.springframework.context.MessageSourceAware#setMessageSource
 * @see org.springframework.context.ApplicationContextAware#setApplicationContext
 * @see org.springframework.web.context.ServletContextAware#setServletContext
 * @see org.springframework.beans.factory.config.BeanPostProcessor#postProcessBeforeInitialization
 * @see InitializingBean#afterPropertiesSet
 * @see org.springframework.beans.factory.support.RootBeanDefinition#getInitMethodName
 * @see org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization
 * @see DisposableBean#destroy
 * @see org.springframework.beans.factory.support.RootBeanDefinition#getDestroyMethodName
 */
public interface BeanFactory {

	/**
	 * Used to dereference a {@link FactoryBean} instance and distinguish it from
	 * beans <i>created</i> by the FactoryBean. For example, if the bean named
	 * {@code myJndiObject} is a FactoryBean, getting {@code &myJndiObject}
	 * will return the factory, not the instance returned by the factory.
	 */
	String FACTORY_BEAN_PREFIX = "&";


	/**
	 * Return an instance, which may be shared or independent, of the specified bean.
	 * <p>This method allows a Spring BeanFactory to be used as a replacement for the
	 * Singleton or Prototype design pattern. Callers may retain references to
	 * returned objects in the case of Singleton beans.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to retrieve
	 * @return an instance of the bean
	 * @throws NoSuchBeanDefinitionException if there is no bean with the specified name
	 * @throws BeansException if the bean could not be obtained
	 */
	Object getBean(String name) throws BeansException;

	/**
	 * Return an instance, which may be shared or independent, of the specified bean.
	 * <p>Behaves the same as {@link #getBean(String)}, but provides a measure of type
	 * safety by throwing a BeanNotOfRequiredTypeException if the bean is not of the
	 * required type. This means that ClassCastException can't be thrown on casting
	 * the result correctly, as can happen with {@link #getBean(String)}.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to retrieve
	 * @param requiredType type the bean must match; can be an interface or superclass
	 * @return an instance of the bean
	 * @throws NoSuchBeanDefinitionException if there is no such bean definition
	 * @throws BeanNotOfRequiredTypeException if the bean is not of the required type
	 * @throws BeansException if the bean could not be created
	 */
	<T> T getBean(String name, Class<T> requiredType) throws BeansException;

	/**
	 * Return an instance, which may be shared or independent, of the specified bean.
	 * <p>Allows for specifying explicit constructor arguments / factory method arguments,
	 * overriding the specified default arguments (if any) in the bean definition.
	 * @param name the name of the bean to retrieve
	 * @param args arguments to use when creating a bean instance using explicit arguments
	 * (only applied when creating a new instance as opposed to retrieving an existing one)
	 * @return an instance of the bean
	 * @throws NoSuchBeanDefinitionException if there is no such bean definition
	 * @throws BeanDefinitionStoreException if arguments have been given but
	 * the affected bean isn't a prototype
	 * @throws BeansException if the bean could not be created
	 * @since 2.5
	 */
	Object getBean(String name, Object... args) throws BeansException;

	/**
	 * Return the bean instance that uniquely matches the given object type, if any.
	 * <p>This method goes into {@link ListableBeanFactory} by-type lookup territory
	 * but may also be translated into a conventional by-name lookup based on the name
	 * of the given type. For more extensive retrieval operations across sets of beans,
	 * use {@link ListableBeanFactory} and/or {@link BeanFactoryUtils}.
	 * @param requiredType type the bean must match; can be an interface or superclass
	 * @return an instance of the single bean matching the required type
	 * @throws NoSuchBeanDefinitionException if no bean of the given type was found
	 * @throws NoUniqueBeanDefinitionException if more than one bean of the given type was found
	 * @throws BeansException if the bean could not be created
	 * @since 3.0
	 * @see ListableBeanFactory
	 */
	<T> T getBean(Class<T> requiredType) throws BeansException;

	/**
	 * Return an instance, which may be shared or independent, of the specified bean.
	 * <p>Allows for specifying explicit constructor arguments / factory method arguments,
	 * overriding the specified default arguments (if any) in the bean definition.
	 * <p>This method goes into {@link ListableBeanFactory} by-type lookup territory
	 * but may also be translated into a conventional by-name lookup based on the name
	 * of the given type. For more extensive retrieval operations across sets of beans,
	 * use {@link ListableBeanFactory} and/or {@link BeanFactoryUtils}.
	 * @param requiredType type the bean must match; can be an interface or superclass
	 * @param args arguments to use when creating a bean instance using explicit arguments
	 * (only applied when creating a new instance as opposed to retrieving an existing one)
	 * @return an instance of the bean
	 * @throws NoSuchBeanDefinitionException if there is no such bean definition
	 * @throws BeanDefinitionStoreException if arguments have been given but
	 * the affected bean isn't a prototype
	 * @throws BeansException if the bean could not be created
	 * @since 4.1
	 */
	<T> T getBean(Class<T> requiredType, Object... args) throws BeansException;

	/**
	 * Return a provider for the specified bean, allowing for lazy on-demand retrieval
	 * of instances, including availability and uniqueness options.
	 * @param requiredType type the bean must match; can be an interface or superclass
	 * @return a corresponding provider handle
	 * @since 5.1
	 * @see #getBeanProvider(ResolvableType)
	 */
	<T> ObjectProvider<T> getBeanProvider(Class<T> requiredType);

	/**
	 * Return a provider for the specified bean, allowing for lazy on-demand retrieval
	 * of instances, including availability and uniqueness options.
	 * @param requiredType type the bean must match; can be a generic type declaration.
	 * Note that collection types are not supported here, in contrast to reflective
	 * injection points. For programmatically retrieving a list of beans matching a
	 * specific type, specify the actual bean type as an argument here and subsequently
	 * use {@link ObjectProvider#orderedStream()} or its lazy streaming/iteration options.
	 * @return a corresponding provider handle
	 * @since 5.1
	 * @see ObjectProvider#iterator()
	 * @see ObjectProvider#stream()
	 * @see ObjectProvider#orderedStream()
	 */
	<T> ObjectProvider<T> getBeanProvider(ResolvableType requiredType);

	/**
	 * Does this bean factory contain a bean definition or externally registered singleton
	 * instance with the given name?
	 * <p>If the given name is an alias, it will be translated back to the corresponding
	 * canonical bean name.
	 * <p>If this factory is hierarchical, will ask any parent factory if the bean cannot
	 * be found in this factory instance.
	 * <p>If a bean definition or singleton instance matching the given name is found,
	 * this method will return {@code true} whether the named bean definition is concrete
	 * or abstract, lazy or eager, in scope or not. Therefore, note that a {@code true}
	 * return value from this method does not necessarily indicate that {@link #getBean}
	 * will be able to obtain an instance for the same name.
	 * @param name the name of the bean to query
	 * @return whether a bean with the given name is present
	 */
	boolean containsBean(String name);

	/**
	 * Is this bean a shared singleton? That is, will {@link #getBean} always
	 * return the same instance?
	 * <p>Note: This method returning {@code false} does not clearly indicate
	 * independent instances. It indicates non-singleton instances, which may correspond
	 * to a scoped bean as well. Use the {@link #isPrototype} operation to explicitly
	 * check for independent instances.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to query
	 * @return whether this bean corresponds to a singleton instance
	 * @throws NoSuchBeanDefinitionException if there is no bean with the given name
	 * @see #getBean
	 * @see #isPrototype
	 */
	boolean isSingleton(String name) throws NoSuchBeanDefinitionException;

	/**
	 * Is this bean a prototype? That is, will {@link #getBean} always return
	 * independent instances?
	 * <p>Note: This method returning {@code false} does not clearly indicate
	 * a singleton object. It indicates non-independent instances, which may correspond
	 * to a scoped bean as well. Use the {@link #isSingleton} operation to explicitly
	 * check for a shared singleton instance.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to query
	 * @return whether this bean will always deliver independent instances
	 * @throws NoSuchBeanDefinitionException if there is no bean with the given name
	 * @since 2.0.3
	 * @see #getBean
	 * @see #isSingleton
	 */
	boolean isPrototype(String name) throws NoSuchBeanDefinitionException;

	/**
	 * Check whether the bean with the given name matches the specified type.
	 * More specifically, check whether a {@link #getBean} call for the given name
	 * would return an object that is assignable to the specified target type.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to query
	 * @param typeToMatch the type to match against (as a {@code ResolvableType})
	 * @return {@code true} if the bean type matches,
	 * {@code false} if it doesn't match or cannot be determined yet
	 * @throws NoSuchBeanDefinitionException if there is no bean with the given name
	 * @since 4.2
	 * @see #getBean
	 * @see #getType
	 */
	boolean isTypeMatch(String name, ResolvableType typeToMatch) throws NoSuchBeanDefinitionException;

	/**
	 * Check whether the bean with the given name matches the specified type.
	 * More specifically, check whether a {@link #getBean} call for the given name
	 * would return an object that is assignable to the specified target type.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to query
	 * @param typeToMatch the type to match against (as a {@code Class})
	 * @return {@code true} if the bean type matches,
	 * {@code false} if it doesn't match or cannot be determined yet
	 * @throws NoSuchBeanDefinitionException if there is no bean with the given name
	 * @since 2.0.1
	 * @see #getBean
	 * @see #getType
	 */
	boolean isTypeMatch(String name, Class<?> typeToMatch) throws NoSuchBeanDefinitionException;

	/**
	 * Determine the type of the bean with the given name. More specifically,
	 * determine the type of object that {@link #getBean} would return for the given name.
	 * <p>For a {@link FactoryBean}, return the type of object that the FactoryBean creates,
	 * as exposed by {@link FactoryBean#getObjectType()}.
	 * <p>Translates aliases back to the corresponding canonical bean name.
	 * Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the name of the bean to query
	 * @return the type of the bean, or {@code null} if not determinable
	 * @throws NoSuchBeanDefinitionException if there is no bean with the given name
	 * @since 1.1.2
	 * @see #getBean
	 * @see #isTypeMatch
	 */
	@Nullable
	Class<?> getType(String name) throws NoSuchBeanDefinitionException;

	/**
	 * Return the aliases for the given bean name, if any.
	 * All of those aliases point to the same bean when used in a {@link #getBean} call.
	 * <p>If the given name is an alias, the corresponding original bean name
	 * and other aliases (if any) will be returned, with the original bean name
	 * being the first element in the array.
	 * <p>Will ask the parent factory if the bean cannot be found in this factory instance.
	 * @param name the bean name to check for aliases
	 * @return the aliases, or an empty array if none
	 * @see #getBean
	 */
	String[] getAliases(String name);

}

 

定义了如下方法:
   Object getBean(String name) //根据指定名称返回一个Bean实例

   <T> T getBean(Class<T> requiredType)  //返回一个与给定Class唯一匹配的Bean实例

   <T> T getBean(String name, Class<T> requiredType)

   Object getBean(String name, Object... args)

   Class<?> getType(String name)       //得到名称为name的Bean的Class对象
   
   boolean isPrototype(String name)   //判断名称为name的Bean是否是原型,即是否总是返回一个新实例
   boolean isSingleton(String name)   //判断名称为name的Bean是否是单例

   boolean containsBean(String name)  //判断是否包含给定名称的Bean实例

   boolean isTypeMatch(String name, Class<?> targetType)  //判断名称为name的Bean实例是否为targetType类型
   String[] getAliases(String name)  //如果名称为name的Bean有别名返回

 

ApplicationContext interface and container

This interface inherits from BeanFactory, enhances BeanFactory, provides transaction processing AOP, internationalization, and event delivery

 

 

Guess you like

Origin blog.csdn.net/qq_27471405/article/details/109262787