Java implementation of binary search tree (a) to add nodes and breadth-first traversal


What is the binary search tree

Binary binary search trees (binary search tree), which is either empty tree, or having the following properties: if its left subtree is not empty, then the value of the left sub-tree, all the nodes are less than its root value node; if its right subtree is not empty, the value of the right sub-tree, all the nodes are greater than the value of the root; its left and right sub-trees are binary search tree. Each sub-tree nodes are formed to satisfy the properties.


Definition tree node

public class BST01<E extends Comparable<E>> {
    private class Node {
        E e;
        Node left; //左子节点
        Node right; //右子节点
        public Node(E e) {
            this.e = e;
        }
    }
}

Add Nodes

Define a root node attribute Node root;

Recursive

public void add(E e) {
 	root = add(root, e);
}

private Node add(Node node, E e) {
    if (node == null) {
        return new Node(e);
    }
    if (e.compareTo(node.e) > 0) {
        node.right = add(node.right, e);
    } else /*if (e.compareTo(node.e) < 0)*/ {
        node.left = add(node.left, e);
    }
    return node;
}

Else to achieve the above, it contains <= node; if the annotation is opened, the free = node.

Cycle to achieve

public void addByCircle(E e) {
   if (root == null) {
       root = new Node(e);
   } else {
       Node p = root;
       while (p != null) {
           if (e.compareTo(p.e) > 0) {
               if (p.right == null) {
                   p.right = new Node(e);
                   break;
               } else {
                   p = p.right;
               }
           } else /*if (e.compareTo(p.e) < 0)*/ {
               if (p.left == null) {
                   p.left = new Node(e);
                   break;
               } else {
                   p = p.left;
               }
           } /*else {
               break;
           }*/
       }
   }
}

Else to achieve the above, it contains <= node; if the two annotations open, free = node.


Hierarchy traversal (breadth-first traversal)

Print out the value of all elements in the tree nodes e, and printed in a hierarchical order.

public void levelOrder1() {
    Queue<Node> queue = new LinkedList<>();
    queue.add(root);
    StringBuilder sb = new StringBuilder();
    while (!queue.isEmpty()) {
        Node node = queue.remove();
        sb.append(node.e + " ");
        if (node.left != null) {
            queue.add(node.left);
        }
        if (node.right != null) {
            queue.add(node.right);
        }
    }
    System.out.println(sb);
}

Starting from the root, each node removed, it will keep the left and right child nodes to a FIFO queue.

test

public static void main(String[] args) {
    BST01<Integer> bst = new BST01<>();
    bst.add(33);
    bst.add(31);
    bst.add(36);
    bst.add(19);
    bst.add(92);
    bst.add(9);
    bst.add(38);
    bst.add(98);
    bst.add(43);
    bst.add(54);
    bst.add(54);
    bst.add(98);
    bst.add(19);
    bst.levelOrder1();
}

Export

33 31 36 19 92 9 38 98 19 43 98 54 54 

Increased levels of depth attribute node

From the above output, view hierarchy, is not very clear.
Next, Nodeadd a level of depth representation propertydepth

private class Node {
    E e;
    Node left;
    Node right;
    int depth;

    public Node(E e) {
        this.e = e;
    }

    public Node(E e, int depth) {
        this(e);
        this.depth = depth;
    }
}

Accordingly, to modify and add the node traversal methods.
The final follows

public class BST01<E extends Comparable<E>> {

    private class Node {
        E e;
        Node left;
        Node right;
        int depth;

        public Node(E e) {
            this.e = e;
        }

        public Node(E e, int depth) {
            this(e);
            this.depth = depth;
        }
    }

        private Node root;

    public void add(E e) {
        root = add(root, e, 0);
    }

    private Node add(Node node, E e, int depth) {
        if (node == null) {
            return new Node(e, depth);
        }
        if (e.compareTo(node.e) > 0) {
            node.right = add(node.right, e, depth + 1);
        } else /*if (e.compareTo(node.e) <= 0)*/ {
            node.left = add(node.left, e, depth + 1);
        }
        return node;
    }

    public void addByCircle(E e) {
        if (root == null) {
            root = new Node(e);
            root.depth = 0;
        } else {
            Node p = root;
            while (p != null) {
                if (e.compareTo(p.e) > 0) {
                    if (p.right == null) {
                        p.right = new Node(e, p.depth + 1);
                        break;
                    } else {
                        p = p.right;
                    }
                } else /*if (e.compareTo(p.e) < 0)*/ {
                    if (p.left == null) {
                        p.left = new Node(e, p.depth + 1);
                        break;
                    } else {
                        p = p.left;
                    }
                } /*else {
                    break;
                }*/
            }
        }
    }

    public void levelOrder1() {
        Queue<Node> queue = new LinkedList<>();
        queue.add(root);
        StringBuilder sb = new StringBuilder();
        while (!queue.isEmpty()) {
            Node node = queue.remove();
            sb.append(node.e + " ");
            if (node.left != null) {
                queue.add(node.left);
            }
            if (node.right != null) {
                queue.add(node.right);
            }
        }
        System.out.println(sb);
    }

    public void levelOrder2() {
        Queue<Node> queue = new LinkedList<>();
        queue.add(root);
        StringBuilder sb = new StringBuilder();
        int tempDepth = -1;
        while (!queue.isEmpty()) {
            Node node = queue.remove();
            if (tempDepth != node.depth) {
                sb.append("\n");
            }
            sb.append(node.e + "(depth=" + node.depth +") ");
            tempDepth = node.depth;
            if (node.left != null) {
                queue.add(node.left);
            }
            if (node.right != null) {
                queue.add(node.right);
            }
        }
        System.out.println(sb);
    }

}

test

Add the same test data, and then call levelOrder2()traversal.
Export

33(depth=0) 
31(depth=1) 36(depth=1) 
19(depth=2) 92(depth=2) 
9(depth=3) 38(depth=3) 98(depth=3) 
19(depth=4) 43(depth=4) 98(depth=4) 
54(depth=5) 
54(depth=6) 

This output structure, to understand this binary search tree more intuitive.
The entire tree should look like this

						33
			      31	    36
		    19				   92
	   9					38       98
        19                    43   98	
                               54
                             54

Published 400 original articles · won praise 364 · Views 1.62 million +

Guess you like

Origin blog.csdn.net/jjwwmlp456/article/details/94966902