[Study notes] Kat driver segment tree

Introduced

  • Classic problem: Given a sequence of support sections taken \ (\ min \) (given \ (l, r, x \ ) all satisfy \ (l \ le i \ le r \) a \ (a_i \) modified to \ (\ min (a_i, X) \) ) and a summation interval

  • Requires \ (O ((n + q ) \ log n) \) settled within a time

Algorithmic process

  • Ji driver segment tree is a tree line potential can be realized section taken \ (\ min / \ max \ ) segment sums

  • In \ (\ min \) as an example, each node maintains a line segment tree four values:

  • (1) \ (MX \) : maximum range

  • (2) \ (cnt \) : the number of occurrences maximum range

  • (3) \ (md \) (number strictly less than the maximum value and the maximum) time interval is greater:

  • (4) \ (SUM \) : intervals and

  • Take achieved interval \ (\ min \) , the line segment recursive tree consisting of nodes in the interrogation interval \ (P \) , the following process:

  • (1) If the \ (the X-\ GE mx_p \) , it is clear that this amendment does not affect the node \ (the p-\) , a direct return

  • (2) If the \ (the X-\ Le md_p \) , then to violence (p \) \ left and right child nodes recursively

  • (3) otherwise \ (md_p <the X-<mx_p \) , the modification of \ (sum_p \) can be calculated as \ (CNT_P \ Times (mx_p-the X-) \) , you can hit the mark

  • Consider illustrate the complexity of the algorithm.

  • Take note interval \ (\ min \) only the different numbers of the interval becoming identical

  • Easy to get a node to the tree line \ (p \) , last modified operation will only make up to node \ (p \) increase the number of different types of numbers within the interval represented by \ (1 \)

  • When the interval is recursively violence to modify operation of the node represents the number of different types bound to reduce the number of

  • That is, the number of all the nodes and increase the number of different types at most \ (O (q \ log n ) \) times, must also reduced by up \ (O ((n + q ) \ log n) \) times

  • Therefore, the total time complexity \ (O ((n + q ) \ log n) \)

Combined with the range of plus

  • Kyrgyzstan driver segment tree can also be added to the combination of range and just one more addition to marking

  • But it is worth noting: If there are sections plus the complexity of the operation to be more a \ (\ log \)

  • Analysis slightly

CF1290E Cartesian Tree

The meaning of problems

  • Given a \ (n-\) of arrangement \ (P \)

  • For each \ (. 1 \ I Le \ n-Le \) , the arrangement obtains all \ (\ le i \) a sequence (to maintain the relative positional relation) of the Cartesian tree (root large heap) the number of all the nodes constituting the size of the tree and child

  • \ (1 \ n \ the 150000 \)

practice

  • For a \ (n-\) sequence elements \ (A \) , which is a Cartesian node tree \ (I \) subtree size \ (. 1-nxt_i-pre_i \) ( \ (pre_i \) and \ (nxt_i \) are \ (a_i \) left and right of the first is greater than \ (a_i \) position, if it were not present \ (0 \) and \ (n-+. 1 \) )

  • So \ (i \) from small to large to maintain all \ (pre \) and \ (nxt \) and can be

  • But for ease of maintenance, we do not maintain a dynamic sequence, but at a length \ (n \) on the serial number of all small to large activation, and the \ (pre \) and \ (nxt \) redefined:

  • If \ (I \) first is bigger than its activated position to the left of the \ (J \) , then \ (pre_i \) is equal to \ (J \) and the total number of the right side is activated, if \ (J \) does not exist, \ (pre_i \) is added to the number of all active \ (1 \)

  • If \ (I \) is greater than a first right of its activated position \ (J \) , then \ (nxt_i \) is equal to \ (J \) and the total number of the left side is activated, if \ (J \) does not exist, \ (nxt_i \) is added to the number of all active \ (1 \)

  • This can be calculated if the former has joined \ (i \) a small number of the answer is \ (\ sum_j (pre_j + nxt_j ) -i ^ 2-2i \)

  • When the first \ (I \) views the first sequence \ (X \) digit is activated (i.e. \ (p_x = I \) ) when:

  • \ (pre_x = nxt_x = I +. 1 \) , can be processed directly

  • If \ (Y <X \) , then \ (nxt_y \) values shall \ (C \) take \ (\ min \) ( \ (C \) for the location \ (X \) left activated number number, including \ (X \) itself)

  • If \ (Y> X \) , then \ (nxt_y \) should be added \ (1 \)

  • That is, to achieve the interval to take \ (\ min \) and plus range, Kyrgyzstan driver segment tree maintenance can, \ (pre \) Similarly

  • \(O(n\log^2n)\)

Code

#include <bits/stdc++.h>
#define p2 p << 1
#define p3 p << 1 | 1

template <class T>
inline void read(T &res)
{
	res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	if (bo) res = ~res + 1;
}

template <class T>
inline T Max(const T &a, const T &b) {return a > b ? a : b;}

template <class T>
inline T Min(const T &a, const T &b) {return a < b ? a : b;}

typedef long long ll;

const int N = 15e4 + 5, M = 6e5 + 5, INF = 0x3f3f3f3f;

int n, p[N], A[N];

void change(int x, int v)
{
	for (; x <= n; x += x & -x)
		A[x] += v;
}

int ask(int x)
{
	int res = 0;
	for (; x; x -= x & -x) res += A[x];
	return res;
}

struct elem
{
	int mx, cnt, md;
	
	friend inline elem operator + (elem a, elem b)
	{
		elem res;
		if (a.mx > b.mx) res = a, res.md = Max(a.md, b.mx);
		else if (a.mx < b.mx) res = b, res.md = Max(a.mx, b.md);
		else res = a, res.cnt = a.cnt + b.cnt, res.md = Max(a.md, b.md);
		return res;
	}
};

struct seg
{
	elem T[M]; int add[M], tag[M], cnt[M]; ll sum[M];
	
	void build(int l, int r, int p)
	{
		T[p] = (elem) {-INF, 0, -INF}; add[p] = 0; tag[p] = INF;
		if (l == r) return;
		int mid = l + r >> 1;
		build(l, mid, p2); build(mid + 1, r, p3);
	}
	
	void down(int p)
	{
		T[p2].mx += add[p]; T[p2].md += add[p]; sum[p2] += 1ll * cnt[p2] * add[p];
		add[p2] += add[p]; tag[p2] += add[p];
		T[p3].mx += add[p]; T[p3].md += add[p]; sum[p3] += 1ll * cnt[p3] * add[p];
		add[p3] += add[p]; tag[p3] += add[p];
		if (tag[p] < T[p2].mx) sum[p2] -= 1ll * T[p2].cnt * (T[p2].mx - tag[p]),
			tag[p2] = T[p2].mx = tag[p];
		if (tag[p] < T[p3].mx) sum[p3] -= 1ll * T[p3].cnt * (T[p3].mx - tag[p]),
			tag[p3] = T[p3].mx = tag[p];
		add[p] = 0; tag[p] = INF;
	}
	
	void upt(int p)
	{
		cnt[p] = cnt[p2] + cnt[p3]; sum[p] = sum[p2] + sum[p3];
		T[p] = T[p2] + T[p3];
	}
	
	void unlock(int l, int r, int pos, int v, int p)
	{
		if (l == r) return (void) (cnt[p] = T[p].cnt = 1, T[p].mx = sum[p] = v);
		int mid = l + r >> 1; down(p);
		if (pos <= mid) unlock(l, mid, pos, v, p2);
		else unlock(mid + 1, r, pos, v, p3);
		upt(p);
	}
	
	void change(int l, int r, int s, int e, int v, int p)
	{
		if (e < l || s > r) return;
		if (s <= l && r <= e) return (void) (add[p] += v, tag[p] += v,
			T[p].mx += v, T[p].md += v, sum[p] += 1ll * cnt[p] * v);
		int mid = l + r >> 1; down(p);
		change(l, mid, s, e, v, p2); change(mid + 1, r, s, e, v, p3);
		upt(p);
	}
	
	void modify(int l, int r, int s, int e, int v, int p)
	{
		if (e < l || s > r) return;
		if (s <= l && r <= e && v > T[p].md)
		{
			if (v < T[p].mx) sum[p] -= 1ll * T[p].cnt * (T[p].mx - v),
				tag[p] = T[p].mx = v;
			return;
		}
		int mid = l + r >> 1; down(p);
		modify(l, mid, s, e, v, p2); modify(mid + 1, r, s, e, v, p3);
		upt(p);
	}
} T1, T2;

int main()
{
	int x;
	read(n);
	for (int i = 1; i <= n; i++) read(x), p[x] = i;
	T1.build(1, n, 1); T2.build(1, n, 1);
	for (int i = 1; i <= n; i++)
	{
		change(p[i], 1); int c = ask(p[i]);
		T1.modify(1, n, 1, p[i], c, 1); T1.change(1, n, p[i], n, 1, 1);
		T2.modify(1, n, p[i], n, i - c + 1, 1); T2.change(1, n, 1, p[i], 1, 1);
		T1.unlock(1, n, p[i], i + 1, 1); T2.unlock(1, n, p[i], i + 1, 1);
		printf("%lld\n", T1.sum[1] + T2.sum[1] - 1ll * i * (i + 2));
	}
	return 0;
}

Section K small value

The meaning of problems

  • A length \ (n-\) sequence, all numbers are \ ([1, n] \ ) positive integer in the

  • \ (n-\) operations, each operation is a section taken \ (\ min \) or seek Interval \ (K \) a small value

  • \ (1 \ n, m \ 8 \ times10 ^ 4 \)

practice

  • Easy to think of the position of the line segment tree tree cover weight

  • When the query is split into the interrogation zone \ (O (\ log n) \) outer layers carry out nodes, these nodes embedded binary tree to segment

  • For the modification, the outer layer of the tree line is marked to take \ (\ min \) marks, but here there is a problem: For flagged by the node, its ancestor nodes embedded segment tree can not be achieved quickly modified.

  • So consider the tree line and Kyrgyzstan drivers thought the same: the same number of modifications put together.

  • When modifications to the split in the outer segment tree all \ (O (\ log n) \) nodes, the nodes find out all the different nature is greater than \ (X \) is the number of nodes and their ancestors in this these number changed to \ (x \) to

  • The number of each note within this number of nodes of different nature Save \ (1 \) , to be in the \ (O (\ log n) \) trees, the trees do modify the inner segment, which is required \ (O ( \ log ^ 2n) \) complexity

  • Therefore, the total complexity of the \ (O ((n + q ) \ log ^ 3n) \)

Code

#include <bits/stdc++.h>
#define p2 p << 1
#define p3 p << 1 | 1

template <class T>
inline void read(T &res)
{
	res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	if (bo) res = ~res + 1;
}

template <class T>
inline T Min(const T &a, const T &b) {return a < b ? a : b;}

const int N = 8e4 + 5, M = N << 2, L = 3e7 + 5;

int n, m, a[N], rt[M], tag[M], ToT, tot, pt[N], nc, del[L], qaq, pos[N], val[N];

struct seg
{
	int lc, rc, sum;
} T[L];

inline int newnode() {return nc ? del[nc--] : ++ToT;}

inline void delnode(int p) {T[p].lc = T[p].rc = T[p].sum = 0; del[++nc] = p;}

void change(int l, int r, int pos, int v, int &p)
{
	if (!v) return;
	if (!p) p = newnode(); T[p].sum += v;
	if (l == r) return;
	int mid = l + r >> 1;
	if (pos <= mid) change(l, mid, pos, v, T[p].lc);
	else change(mid + 1, r, pos, v, T[p].rc);
}

void dfs(int p)
{
	if (!p) return;
	dfs(T[p].lc); dfs(T[p].rc);
	delnode(p);
}

int ask(int l, int r, int x, int p)
{
	if (l == r) return 0;
	int mid = l + r >> 1, res;
	if (x <= mid) res = ask(l, mid, x, T[p].lc) + T[T[p].rc].sum,
		dfs(T[p].rc), T[p].rc = 0;
	else res = ask(mid + 1, r, x, T[p].rc);
	return T[p].sum = T[T[p].lc].sum + T[T[p].rc].sum, res;
}

void zzq(int x, int &p) {change(1, n, x, ask(1, n, x, p), p);}

void build(int l, int r, int p)
{
	tag[p] = n;
	for (int i = l; i <= r; i++) change(1, n, a[i], 1, rt[p]);
	if (l == r) return;
	int mid = l + r >> 1;
	build(l, mid, p2); build(mid + 1, r, p3);
}

void down(int p)
{
	tag[p2] = Min(tag[p2], tag[p]);
	tag[p3] = Min(tag[p3], tag[p]);
	zzq(tag[p], rt[p2]); zzq(tag[p], rt[p3]);
	tag[p] = n;
}

void zhouzhouzka(int l, int r, int x, int p)
{
	if (x > r || !T[p].sum) return;
	if (l == r) return (void) (pos[++qaq] = l, val[qaq] = T[p].sum);
	int mid = l + r >> 1;
	zhouzhouzka(l, mid, x, T[p].lc);
	zhouzhouzka(mid + 1, r, x, T[p].rc);
}

void getmin(int l, int r, int s, int e, int x, int p)
{
	if (e < l || s > r) return;
	if (s <= l && r <= e)
	{
		tag[p] = Min(tag[p], x); qaq = 0; zhouzhouzka(1, n, x + 1, rt[p]);
		zzq(x, rt[p]);
		for (int i = 1; i <= qaq; i++)
			for (int q = p >> 1; q; q >>= 1)
				change(1, n, pos[i], -val[i], rt[q]),
					change(1, n, x, val[i], rt[q]);
		return;
	}
	int mid = l + r >> 1; down(p);
	getmin(l, mid, s, e, x, p2); getmin(mid + 1, r, s, e, x, p3);
}

void czx(int l, int r, int s, int e, int x, int p)
{
	if (e < l || s > r) return;
	if (s <= l && r <= e) return (void) (pt[++tot] = rt[p]);
	int mid = l + r >> 1; down(p);
	czx(l, mid, s, e, x, p2); czx(mid + 1, r, s, e, x, p3);
}

int query(int l, int r, int k)
{
	tot = 0; czx(1, n, l, r, n, 1);
	int d = 0;
	for (int i = 1; i <= tot; i++) d += T[pt[i]].sum;
	l = 1; r = n;
	while (l < r)
	{
		int delta = 0, mid = l + r >> 1;
		for (int i = 1; i <= tot; i++) delta += T[T[pt[i]].lc].sum;
		if (k <= delta)
		{
			r = mid;
			for (int i = 1; i <= tot; i++) pt[i] = T[pt[i]].lc;
		}
		else
		{
			k -= delta; l = mid + 1;
			for (int i = 1; i <= tot; i++) pt[i] = T[pt[i]].rc;
		}
	}
	return l;
}

int main()
{
	int op, l, r, x;
	read(n); read(m);
	for (int i = 1; i <= n; i++) read(a[i]);
	build(1, n, 1);
	while (m--)
	{
		read(op); read(l); read(r); read(x);
		if (op == 1 && x > n) x = n;
		if (op == 1) getmin(1, n, l, r, x, 1);
		else printf("%d\n", query(l, r, x));
	}
	return 0;
}

Guess you like

Origin www.cnblogs.com/xyz32768/p/12590112.html