线程池—ThreadPoolExecutor体系

体系

      ThreadPoolExecutor  extends  AbstractExecutorService

    AbstractExecutorService  implements  ExecutorService

    ExecutorService  extends  Executor

一、java.uitl.concurrent.ThreadPoolExecutor

此类是线程池中最核心的一个类 ,在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作。下面解释下一下构造器中各个参数的含义:

  • corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads():初始化一个核心线程;或者prestartCoreThread():初始化所有核心线程,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。 默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  • maximumPoolSize线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
  • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
    TimeUnit.DAYS; //
    TimeUnit.HOURS; // 小时
    TimeUnit.MINUTES; // 分钟
    TimeUnit.SECONDS; //
    TimeUnit.MILLISECONDS; // 毫秒
    TimeUnit.MICROSECONDS; // 微妙
    TimeUnit.NANOSECONDS; // 纳秒

  • workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
    ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;
    LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;
    SynchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。
ArrayBlockingQueue和PriorityBlockingQueue使用较少, 一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。
  • threadFactory:线程工厂,主要用来创建线程;
  • handler:表示当拒绝处理任务时的策略,有以下四种取值:
    ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
    ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
    ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
    ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

从上面给出的ThreadPoolExecutor类的代码可以知道,ThreadPoolExecutor继承了AbstractExecutorService,我们来看一下AbstractExecutorService的实现:

二、AbstractExecutorService

public abstract class AbstractExecutorService implements ExecutorService { 
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { };
    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { };
    public Future<?> submit(Runnable task) {};
    public <T> Future<T> submit(Runnable task, T result) { };
    public <T> Future<T> submit(Callable<T> task) { };
    private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,boolean timed, long nanos)throws InterruptedException, ExecutionException, TimeoutException {};
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks)throws InterruptedException, ExecutionException {};
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)throws InterruptedException, ExecutionException, TimeoutException {};
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)throws InterruptedException {};
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,long timeout, TimeUnit unit)throws InterruptedException {};
}

AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。我们接着看ExecutorService接口的实现:

三、ExecutorService

public interface ExecutorService extends Executor {
    void shutdown();
    boolean isShutdown();
    boolean isTerminated();
    boolean awaitTermination(long timeout, TimeUnit unit)throws InterruptedException;
    <T> Future<T> submit(Callable<T> task);
    <T> Future<T> submit(Runnable task, T result);
    Future<?> submit(Runnable task);
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)throws InterruptedException;
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,long timeout, TimeUnit unit)throws InterruptedException;
    <T> T invokeAny(Collection<? extends Callable<T>> tasks)throws InterruptedException, ExecutionException;
    <T> T invokeAny(Collection<? extends Callable<T>> tasks,long timeout, TimeUnit unit)throws InterruptedException, ExecutionException, TimeoutException;
}

而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:

四、Executor

public interface Executor {
    void execute(Runnable command);
}
    Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的; ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等; AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法; ThreadPoolExecutor继承了类AbstractExecutorService。


在ThreadPoolExecutor类中有几个非常重要的方法:
①execute()
execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。
②submit()
submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

③shutdown() : 不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务

④shutdownNow() : 立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务

还有很多其他的方法:
  比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法

猜你喜欢

转载自blog.csdn.net/wxd_1024/article/details/80500914
今日推荐