Como usar Python para gerar automaticamente relatórios de análise estatística de precipitação com base em dados

Primeiro, olhe para os requisitos:

 

 

O principal é gerar automaticamente o relatório estatístico do Word à direita de acordo com a tabela da esquerda As possibilidades reais são muito mais complicadas do que as mostradas na figura.
Ok, vamos começar a fazer o código!
1. Leitura de dados

import pandas as pd

df = pd.read_csv("11月份数据.csv", encoding='gbk')
# 当前统计月份
month = 11
df = df.query('月份==@month')
df.head(10)

Dados de visualização:

 

 

2. Filtragem de dados anormais
Visualize o número de valores ausentes:

pd.isnull(df).sum()

resultado:

区域          0
月份          0
降雨量(mm)     0
降雨距平(mm)    1
观测站         0
dtype: int64

Apenas um dado de valor ausente pode ser excluído diretamente:

df.dropna(inplace=True)

3. Calcule a variação da
precipitação na estação de observação em relação aos anos anteriores. Calcule o número de vezes que a precipitação é maior do que nos anos anteriores, inalterada em relação aos anos anteriores e inferior aos anos anteriores:

rainfall_high = df.eval('`降雨距平(mm)` > 0').value_counts().get(True, 0)
rainfall_equal = df.eval('`降雨距平(mm)` == 0').value_counts().get(True, 0)
rainfall_low = df.eval('`降雨距平(mm)` < 0').value_counts().get(True, 0)
print(rainfall_high, rainfall_equal, rainfall_low)

13 1 18

Nos resultados acima, rain_high representa o número de vezes que a precipitação é maior que o nível médio dos anos anteriores, rain_equal representa o número de vezes que a precipitação é igual ao nível médio dos anos anteriores, e rain_low representa o número de vezes que a precipitação é inferior ao nível médio dos anos anteriores.
Portanto, o primeiro parágrafo do relatório é gerado de acordo com a situação:

p1 = f"{month}月份"
if rainfall_low == 0 or rainfall_high == 0:
    if rainfall_equal != 0:
        p1 += f"除{rainfall_equal}个观测站降雨量较往年无变化外,"
    if rainfall_high == 0:
        p1 += f"各气象观测站降雨量较往年均偏低。"
    elif rainfall_low == 0:
        p1 += f"各气象观测站降雨量较往年均偏高。"
else:
    #  10%以内差异认为是持平
    if rainfall_high > rainfall_low*1.1:
        p1 += f"大部分气象观测站降雨量较往年偏高。"
    elif rainfall_low > rainfall_high*1.1:
        p1 += f"大部分气象观测站降雨量较往年偏低。"
    else:
        p1 += f"各气象观测站降雨量较往年整体持平。"
p1

resultado:

'11月份大部分气象观测站降雨量较往年偏低。'

4. Calcule o valor extremo da precipitação em cada região
e gere o segundo parágrafo do relatório:

p2 = ""
t = df['降雨量(mm)']
p2 += f"各区域降雨量在{t.min()}~{t.max()}mm之间,其中{df.loc[t.argmax(), '区域']}区域的降雨量最大,为{t.max()}mm。"
p2

resultado:

'各区域降雨量在0.0~16.0mm之间,其中51a45区域的降雨量最大,为16.0mm。'

5. Estatísticas por subestação de observação A parte
que me faz doer de cabeça vem do código aqui, e há requisitos mais complicados posteriormente que não serão anunciados.
Para cada estação de observação, conte quais áreas são altas, quais áreas são planas e quais áreas são baixas:

p3s = []
for station, tmp in df.groupby('观测站'):
    t = tmp['降雨量(mm)']
    p3 = f"各区域降雨量在{t.min()}~{t.max()}mm之间,"
    rainfall_high_mask = tmp.eval('`降雨距平(mm)` > 0')
    rainfall_equal_mask = tmp.eval('`降雨距平(mm)` == 0')
    rainfall_low_mask = tmp.eval('`降雨距平(mm)` < 0')

    rainfall_high = rainfall_high_mask.value_counts().get(True, 0)
    rainfall_equal = rainfall_equal_mask.value_counts().get(True, 0)
    rainfall_low = rainfall_low_mask.value_counts().get(True, 0)
#     print(rainfall_high, rainfall_equal, rainfall_low)

    if rainfall_low == 0 or rainfall_high == 0:
        if rainfall_equal != 0:
            p3 += '除'
            p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域')
            p3 += "降雨量较往年无变化外,"
        if rainfall_high == 0:
            p3 += f"各区域降雨量均较往年偏低"
        elif rainfall_low == 0:
            p3 += f"各区域降雨量均较往年偏高"
        t = tmp['降雨距平(mm)'].abs()
        p3 += f"{t.min()}~{t.max()}mm;"
    else:
        if rainfall_equal != 0:
            p3 += '除'
            p3 += '、'.join(tmp.loc[rainfall_equal_mask, '区域']+'区域')
            p3 += "降雨量较往年无变化,"
        #  10%以内差异认为是持平
        if rainfall_high > rainfall_low*1.1:
            if rainfall_equal == 0:
                p3 += '除'
            p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域')
            p3 += "降雨量较往年偏低"
            t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()
            if t.shape[0] > 1:
                p3 += f"{t.min()}~{t.max()}mm"
            else:
                p3 += f"{t.min()}mm"
            p3 += "外,"
            t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()
            p3 += f"其余各区域降雨量较往年偏高{t.min()}~{t.max()}mm;"
        elif rainfall_low > rainfall_high*1.1:
            if rainfall_equal == 0:
                p3 += '除'
            p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域')
            p3 += "降雨量较往年偏高"
            t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()
            if t.shape[0] > 1:
                p3 += f"{t.min()}~{t.max()}mm"
            else:
                p3 += f"{t.min()}mm"
            p3 += "外,"
            t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()
            p3 += f"其余各区域降雨量较往年偏低{t.min()}~{t.max()}mm;"
        else:
            if rainfall_equal != 0:
                p3 = p3[:-1]+'外,'
            p3 += f"各区域降雨量较往年偏高和偏低的数量持平,其中"
            p3 += '、'.join(tmp.loc[rainfall_low_mask, '区域']+'区域')
            p3 += "降雨量较往年偏低"
            t = tmp.loc[rainfall_low_mask, '降雨距平(mm)'].abs()
            if t.shape[0] > 1:
                p3 += f"{t.min()}~{t.max()}mm,"
            else:
                p3 += f"{t.min()}mm,"
            p3 += '、'.join(tmp.loc[rainfall_high_mask, '区域']+'区域')
            p3 += "降雨量较往年偏高"
            t = tmp.loc[rainfall_high_mask, '降雨距平(mm)'].abs()
            if t.shape[0] > 1:
                p3 += f"{t.min()}~{t.max()}mm;"
            else:
                p3 += f"{t.min()}mm;"
    p3s.append([station, p3])
p3s[-1][-1] = p3s[-1][-1][:-1]+"。"
p3s

6. Escreva o texto organizado no
conteúdo do arquivo de modelo do Word docxtemplate.docx no Word:

一、{
   
   { month }}月各气象观测站降雨量实况
(一)降水
{
   
   { p1 }}
{
   
   { p2 }}
{%p for station,p3 in p3s %}
{
   
   { station }}:{
   
   { p3 }}
{%p endfor %}

qual é:

 

 

Código de renderização Python:

from docxtpl import DocxTemplate

tpl = DocxTemplate("docxtemplate.docx")
context = {
    'month': month,
    'p1': p1,
    'p2': p2,
    'p3s': p3s,
}
tpl.render(context)
tpl.save("11月降雨量报告.docx")

Após a execução ser concluída, o relatório de análise estatística do Word é obtido:

 

Acho que você gosta

Origin blog.csdn.net/pythonxuexi123/article/details/112796299
Recomendado
Clasificación