STM32F103 porta serial DMA + interrupção ociosa para transmissão e recepção de dados de comprimento variável

    Existem dois artigos na série DMA de porta serial, um é usar DMA + interrupção ociosa para enviar e receber dados de comprimento variável, o outro é usar interrupção DMA para enviar e receber dados de comprimento fixo, o link do artigo é o seguinte:
    01 STM32F103 DMA serial + interrupção ociosa para realizar comprimento variável Transceptor de dados
    02 porta serial STM32F103 + interrupção DMA para alcançar o transceptor de dados

    DMA (Direct Memory Access) é um recurso importante de todos os computadores modernos, pois permite que dispositivos de hardware de diferentes velocidades se comuniquem sem depender da carga de interrupção massiva da CPU. Caso contrário, a CPU precisa copiar os dados de cada segmento da fonte para o bloco de notas e, em seguida, gravá-los de volta no novo local. Durante este tempo, a CPU não pode ser usada para outras tarefas.
    Para obter o conhecimento básico de DMA, consulte o artigo https://blog.csdn.net/gdjason/article/details/51019219 . Pessoalmente, acho que a última parte do código do artigo do blogueiro é um pouco confusa, então organizarei os registros novamente. O DMA serial pode ter dois métodos de disparo de interrupção. Um é usar a interrupção ociosa IDLE do STM32 para facilitar o recebimento de dados de comprimento variável. Este método é frequentemente usado. O segundo é usar a própria interrupção de conclusão de transferência do DMA. O método pode gerar a interrupção de conclusão de transmissão após o término da transmissão.A diferença é que a interrupção ociosa é conveniente para receber dados de comprimento variável, e a interrupção de conclusão de transmissão DMA só irá gerar a interrupção de recepção após receber o comprimento definido de dados.
 

1. Interrupção ociosa

    Este texto usa o barramento 485 para experimentar a interrupção ociosa do DMA da porta serial e realizar o teste de envio e recebimento de dados. A diferença do 485 é que existe um pino de habilitação adicional. Este pino é de alto nível para habilitar a transmissão e o de baixo nível para habilitar a recepção, portanto, é uma comunicação half-duplex, e os outros são consistentes com a porta serial. Este exemplo usa a porta serial 1 STM32F103, o pino TX é PA9; o pino RX é PA10 e o pino de habilitação de 485 é PD1. Quando você usa o teste de função da porta serial na placa, não precisa considerar o pino de habilitação de 485. A parte sobre 485 neste artigo é marcada com / **** RS485 **** /, e a parte do código está abaixo.

1.1 uart_dma.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
#include "stm32f10x_usart.h"
#include "stm32f10x_dma.h"
#include "misc.h"

#include "systick.h"	// 利用嘀嗒计时器实现了ms级的死等延时,用于切换485收发功能使用,实际项目中不能用死等延时
#include "uart_dma.h"

uint8_t uart1RecvData[32] = {
    
    0};    // 接收数据缓冲区
uint8_t uart1RecvFlag = 0;          // 接收完成标志位
uint8_t uart1RecvLen = 0;           // 接收的数据长度

uint8_t uart1SendData[32] = {
    
    0};    // 发送数据缓冲区
uint8_t uart1SendFlag = 0;          // 发送完成标志位

/* 串口1 GPIO引脚初始化 */
void Uart1GpioInit(void)
{
    
    
    GPIO_InitTypeDef GPIO_InitStruct;

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);   // 使能GPIOA时钟

	/************ ↓ RS485 相关 ↓ ************/
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE);   // 使能GPIOD时钟
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;    // 输入输出使能引脚 推挽输出
    GPIO_InitStruct.GPIO_Pin = UART1_EN_PIN;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(UART1_EN_PORT, &GPIO_InitStruct);     // PD1
    Uart1RxEnable();    // 初始化接收模式
    /************ ↑ RS485 相关 ↑ ************/
    
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;    // TX 推挽输出
    GPIO_InitStruct.GPIO_Pin = UART1_TX_PIN;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(UART1_TX_PORT, &GPIO_InitStruct);     // PA9
    
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;      // RX上拉输入
    GPIO_InitStruct.GPIO_Pin = UART1_RX_PIN;
    GPIO_Init(UART1_RX_PORT, &GPIO_InitStruct);     // PA10
}

/************ ↓ RS485 相关 ↓ ************/
/* 使能485发送 */
void Uart1TxEnable(void)
{
    
    
    GPIO_WriteBit(UART1_EN_PORT, UART1_EN_PIN, Bit_SET);    // 485的使能引脚,高电平为使能发送
    Delay_ms(5);
}

/* 使能485接收 */
void Uart1RxEnable(void)
{
    
    
    GPIO_WriteBit(UART1_EN_PORT, UART1_EN_PIN, Bit_RESET);  // 485的使能引脚,低电平为使能发送
    Delay_ms(5);
}
/************ ↑ RS485 相关 ↑ ************/
 
/* 串口1配置 9600 8n1 */
void Uart1Config(void)
{
    
    
    USART_InitTypeDef USART_InitStruct;		// 串口配置
    NVIC_InitTypeDef NVIC_InitStructure;	// 中断配置
    DMA_InitTypeDef DMA_InitStruct;			// DMA 配置
    
    USART_DeInit(USART1);   // 寄存器恢复默认值
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);  // 使能串口时钟
    
    /* 串口参数配置 */
    USART_InitStruct.USART_BaudRate = BAUD_RATE;            // 波特率:9600
    USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;    // 无流控
    USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;    // 收发
    USART_InitStruct.USART_Parity = USART_Parity_No;                // 无校验位 
    USART_InitStruct.USART_StopBits = USART_StopBits_1;             // 1个停止位
    USART_InitStruct.USART_WordLength = USART_WordLength_8b;        // 8个数据位
    USART_Init(USART1, &USART_InitStruct);
    USART_Cmd(USART1, ENABLE);  // 使能串口
    
    /* 串口中断配置 */
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;             // 使能
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;   // 抢占优先级
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;          // 子优先级
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;           // 串口1中断
    NVIC_Init(&NVIC_InitStructure);     // 嵌套向量中断控制器初始化

    USART_ITConfig(USART1, USART_IT_TC,   ENABLE);  // 使能串口发送中断,发送完成产生 USART_IT_TC 中断
    USART_ITConfig(USART1, USART_IT_IDLE, ENABLE);  // 使能串口空闲中断,接收一帧数据产生 USART_IT_IDLE 空闲中断
    
    /* 串口DMA配置 */
    DMA_DeInit(DMA1_Channel4);  // DMA1 通道4,寄存器复位
    DMA_DeInit(DMA1_Channel5);  // DMA1 通道5,寄存器复位
    
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);  // 使能 DMA1 时钟
    
    // RX DMA1 通道5
    DMA_InitStruct.DMA_BufferSize = sizeof(uart1RecvData);      // 定义了接收的最大长度
    DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralSRC;             // 串口接收,方向是外设->内存
    DMA_InitStruct.DMA_M2M = DMA_M2M_Disable;                   // 本次是外设到内存,所以关闭内存到内存
    DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)uart1RecvData;// 内存的基地址,要存储在哪里
    DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;// 内存数据宽度,按照字节存储
    DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;        // 内存递增,每次串口收到数据存在内存中,下次收到自动存储在内存的下一个位置
    DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;                  // 正常模式
    DMA_InitStruct.DMA_PeripheralBaseAddr = USART1_BASE + 0x04; // 外设的基地址,串口的数据寄存器
    DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;    // 外设的数据宽度,按照字节存储,与内存的数据宽度一致
    DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;   // 接收只有一个数据寄存器 RDR,所以外设地址不递增
    DMA_InitStruct.DMA_Priority = DMA_Priority_High;            // 优先级
    DMA_Init(DMA1_Channel5, &DMA_InitStruct);
    
    // TX DMA1 通道4  
    DMA_InitStruct.DMA_BufferSize = 0;                          // 发送缓冲区的大小,初始化为0不发送
    DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralDST;             // 发送是方向是外设到内存,外设作为目的地
    DMA_InitStruct.DMA_MemoryBaseAddr =(uint32_t)uart1SendData; // 发送内存地址,从哪里发送
    DMA_Init(DMA1_Channel4, &DMA_InitStruct);
     
    USART_DMACmd(USART1, USART_DMAReq_Tx | USART_DMAReq_Rx, ENABLE);// 使能DMA串口发送和接受请求
    DMA_Cmd(DMA1_Channel5, ENABLE);     // 使能接收
    DMA_Cmd(DMA1_Channel4, DISABLE);    // 禁止发送
}

/* 清除DMA的传输数量寄存器 */
void uart1DmaClear(void)
{
    
    
    DMA_Cmd(DMA1_Channel5, DISABLE);    // 关闭 DMA1_Channel5 通道
    DMA_SetCurrDataCounter(DMA1_Channel5, sizeof(uart1RecvData));   // 重新写入要传输的数据数量
    DMA_Cmd(DMA1_Channel5, ENABLE);     // 使能 DMA1_Channel5 通道
}

/* 串口1发送数组 */
void uart1SendArray(uint8_t *arr, uint8_t len)
{
    
    
    if(len == 0)	// 判断长度是否有效
      return;
	
	uint8_t sendLen = len>sizeof(uart1SendData) ? sizeof(uart1SendData) : len;	// 防止越界

    /************ ↓ RS485 相关 ↓ ************/ 
    Uart1TxEnable();    // 使能发送
    /************ ↑ RS485 相关 ↑ ************/
    
    while (DMA_GetCurrDataCounter(DMA1_Channel4));  // 检查DMA发送通道内是否还有数据
    if(arr) 
      memcpy(uart1SendData, arr, sendLen);
    
    // DMA发送数据-要先关 设置发送长度 开启DMA
    DMA_Cmd(DMA1_Channel4, DISABLE);
    DMA_SetCurrDataCounter(DMA1_Channel4, sendLen);   // 重新写入要传输的数据数量
    DMA_Cmd(DMA1_Channel4, ENABLE);     // 启动DMA发送  
}

 

1.2 uart_dma.h

#ifndef _UART_DAM_H_
#define _UART_DMA_H_

#include <stdint.h>

#define UART1_TX_PORT   GPIOA
#define UART1_TX_PIN    GPIO_Pin_9
#define UART1_RX_PORT   GPIOA
#define UART1_RX_PIN    GPIO_Pin_10
#define UART1_EN_PORT   GPIOD
#define UART1_EN_PIN    GPIO_Pin_1
#define BAUD_RATE       (9600)

extern uint8_t uart1RecvData[32];
extern uint8_t uart1RecvFlag;
extern uint8_t uart1RecvLen;
extern uint8_t uart1SendFlag;

void Uart1GpioInit(void);
void Uart1Config(void);
void uart1DmaClear(void);
void uart1SendArray(uint8_t *arr, uint8_t len);

/************ ↓ RS485 相关 ↓ ************/ 
void Uart1RxEnable(void);
void Uart1TxEnable(void);
/************ ↑ RS485 相关 ↑ ************/

#endif  /* uart_dma.h */

 

1.3 main.c

#include "uart_dma.h"
#include "misc.h"

int main()
{
    
     
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);  // 设置中断优先级分组
    
    /************ ↓ RS485 相关 ↓ ************/ 
    SysTickInit();          // 嘀嗒计时器初始化,没用485可以省去
    /************ ↑ RS485 相关 ↑ ************/
    
    Uart1GpioInit();	// 串口GPIO初始化
    Uart1Config();		// 串口和DMA配置

    while(1)
    {
    
         
        if(uart1RecvFlag == 1)	// 接收到数据
        {
    
    
            uart1RecvFlag = 0;  // 接收标志清空
            uart1DmaClear();    // 清空DMA接收通道
            uart1SendArray(uart1RecvData, uart1RecvLen);        // 使用DMA发送数据
            memset(uart1RecvData, '\0', sizeof(uart1RecvData)); // 清空接收缓冲区
        }
        
        if(uart1SendFlag == 1)
        {
    
    
            uart1SendFlag = 0;  // 清空发送标志   
            Uart1RxEnable();    // 发送完成打开接收
        }
    }
}

 

1.4 stm32f10x_it.c

#include "stm32f10x_it.h"
#include "stm32f10x_usart.h"
#include "stm32f10x_dma.h"

#include "uart_dma.h"

void USART1_IRQHandler(void)    // 串口1 的中断处理函数
{
    
    
    uint8_t clear;

    if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)   // 空闲中断
    {
    
    
        clear = USART1->SR; // 清除空闲中断
        clear = USART1->DR; // 清除空闲中断
        
        uart1RecvFlag = 1;  // 置接收标志位
        uart1RecvLen = sizeof(uart1RecvData) - DMA_GetCurrDataCounter(DMA1_Channel5);// 总的buf长度减去剩余buf长度,得到接收到数据的长度
    }   
    
    if(USART_GetITStatus(USART1, USART_IT_TC) != RESET)     // 发送完成
    {
    
    
        USART_ClearITPendingBit(USART1, USART_IT_TC);       // 清除完成标记
        DMA_Cmd(DMA1_Channel4, DISABLE);                    // 关闭DMA
        uart1SendFlag = 1;                                  // 设置发送完成标志位
    }
}

 

1.5 Demonstração de efeito

    Este artigo usa a porta serial para usar a interrupção ociosa DMA para receber dados de comprimento variável. Depois de receber os dados, os dados recebidos são enviados usando DMA e o assistente de depuração da porta serial é usado para depuração. O efeito é o seguinte: você pode ver que quando os dados excedem os dados máximos definidos (isto Por exemplo, após 32 bytes), o receptor pode receber apenas 32 dados e os outros dados serão descartados.
Insira a descrição da imagem aqui
 

1.6 Suplemento de conhecimento

1.6.1 Endereço de base periférica

    O endereço periférico para base definido neste artigo é USART1_BASE + 0x04, por que isso? Verifique o manual de referência STM32, encontre o capítulo da porta serial e procure o mapa de endereço do registro USART conforme mostrado abaixo: Você pode ver que o registro de dados é a posição após o deslocamento do registro do endereço base da porta serial 0x04. A definição da macro do endereço base da porta serial 1 pode ser encontrada em stm32f10x.h, conforme mostrado na figura abaixo.
Insira a descrição da imagem aqui
Definição de macro de endereço de base da porta serial 1
 

1.6.2 Interrupção ociosa limpa

    Depois que uma interrupção inativa é gerada, leia SR primeiro e, em seguida, leia DR para limpar o bit de flag de interrupção inativa, conforme mostrado na figura abaixo (Porta serial Capítulo 25.6.1 Registro de status (USART_SR) do manual).
Insira a descrição da imagem aqui
 

1.6.3 Número de transferências DMA

    Consulte o manual, o valor no registro de quantidade de transferência DMA indica o número de bytes restantes a serem transferidos, então o número total definido nele.c- o valor no registro = indica o número recebido. Este local requer atenção especial, caso contrário, o número de bytes recebidos será calculado incorretamente.
Insira a descrição da imagem aqui
    Outro ponto é que após cada recepção ser concluída, a fim de fazer a próxima recepção do subscrito 0 na memória ou armazená-lo, é necessário reescrever a quantidade de dados a serem transmitidos, caso contrário, na próxima vez começará a receber e armazenar diretamente da posição da última transmissão. O mesmo se aplica ao envio, consulte as linhas 127–129 e as linhas 149–151 no código uart_dma.c.
    Se a linha 128 for comentada e o registro da quantidade de transferência não for reescrito a cada vez, o resultado da demonstração é o seguinte: A partir do resultado, pode-se ver que se a linha 128 for comentada, o subscrito começará a partir da última posição final quando o DMA transferir dados para o buffer de recebimento. A posição inicial [porque o valor do registro da quantidade de transferência não é 0 neste momento, é 32-7], a frente é '/ 0' porque o buffer de recebimento é limpo após cada recepção. Portanto, após receber um quadro de dados, o registro da quantidade de transferência deve ser zerado.
Insira a descrição da imagem aqui

    Se você tiver alguma dúvida durante o processo de aprendizagem de DMA, seja bem-vindo para se comunicar.

Acho que você gosta

Origin blog.csdn.net/qq_36310253/article/details/109641759
Recomendado
Clasificación