金融市場の高頻度データはどのように管理する必要がありますか?-DolphinDBとpickleのパフォーマンス比較テストと分析

金融市場のL1 / L2相場と取引データは、定量的取引研究にとって非常に重要なデータです。国内市場全体でのL1 / L2の過去のデータは約20-50Tであり、毎日の新しいデータ量は約20-50Gです。MS SQL ServerやMySQLなどの従来のリレーショナルデータベースは、このレベルのデータをサポートできません。データベースがテーブルに分割されている場合でも、クエリのパフォーマンスは要件に達するにはほど遠いです。たとえば、ImpalaやGreenplumなどのデータウェアハウスやHBaseなどのNoSQLデータベースは、このレベルのデータストレージを解決できますが、このような一般的なストレージエンジンは時系列データを適切にサポートしておらず、クエリと計算に重大な欠陥があります。サポート定量的ファイナンスで一般的に使用されているPythonの場合も、非常に制限されています。

データベースの制限により、一部のユーザーはファイルストレージに目を向けています。HDF5、Parquet、およびpickleは、一般的に使用されるバイナリファイル形式であり、pickleは、Pythonオブジェクトのシリアル化/逆シリアル化のプロトコルとして非常に効率的です。Pythonは定量的な財務およびデータ分析の一般的なツールであるため、多くのユーザーはピクルスを使用して高頻度のデータを保存します。ただし、ファイルストレージには、大量のデータ冗長性、異なるバージョン間の管理の難しさ、権限制御の欠如、複数のノードのリソースを使用できない、異なるデータ間の不便な関連付け、粗すぎるデータ管理の細かさ、取得などの明らかな欠点があります。そして、クエリなどの不便。

現在、ますます多くの証券会社とプライベートエクイティが、高性能の時系列データベースDolphinDBを使用して高頻度のデータを処理し始めています。DolphinDBは列型ストレージを使用し、クラスター内の各ノードのリソースを最大限に活用するためのさまざまな柔軟なパーティショニングメカニズムを提供します。DolphinDBの多数の組み込み関数は、時系列データの処理と計算に非常に適しています。これにより、時系列データの処理における従来のリレーショナルデータベースまたはNoSQLデータベースの制限が解決されます。DolphinDBを使用して高頻度のデータを処理すると、クエリと計算の超高パフォーマンスが保証されるだけでなく、データ管理、権限制御、並列コンピューティング、データ関連付け、およびその他のデータベースの利点も提供されます。

この記事では、データ読み取りにおけるDolphinDBとpickleのパフォーマンスをテストします。DolphinDBデータベースを直接使用してピクルスファイルストレージを使用する場合と比較して、データの読み取り速度を10倍以上向上させることができます。既存のPythonシステムとの統合を検討する場合は、DolphinDBが提供するPythonAPIを使用してデータを読み取ります。速度は最大2〜3倍向上します。データ管理およびその他の側面におけるDolphinDBデータベースの機能については、読者はDolphinDBのオンラインドキュメントまたはチュートリアルを参照できます

1.テストシナリオとテストデータ

このテストでは、次の2つのデータセットを使用しました。

  • データセット1は、米国株式市場の1日(2007.08.23)レベル1の相場および取引データです。データは合計10列で、そのうち2列は文字列型、残りは整数型または浮動小数点型です。dolphindbに格納されるテーブル構造は次のとおりです。1日のデータは約2億3000万行です。csvファイルのサイズは9.5G、pickleファイルに変換した後のサイズは11.8Gです。
列名 の種類
シンボル シンボル
日付 日付
時間 2番目
入札 ダブル
ofr ダブル
bidsiz INT
offrless INT
モード INT
ex CHAR
mmid シンボル
  • データセット2は、3日間(2019.09.10〜2019.09.12)の中国株式市場のレベル2見積もりデータです。データセットは合計78列で、そのうち2列は文字列型です。dolphindbに格納されるテーブル構造は次の表のとおりです。1日のデータは約2,170万行です。1日のcsvファイルのサイズは11.6G、変換されたファイルのサイズは12.1Gです。
列名 の種類 列名 の種類
UpdateTime 時間 TotalBidVol INT
TradeDate 日付 WAvgBidPri ダブル
市場 シンボル TotalAskVol INT
SecurityID シンボル WAvgAskPri ダブル
PreCloPrice ダブル IOPV ダブル
OpenPrice ダブル AskPrice1〜10 ダブル
高価 ダブル AskVolume1〜10 INT
低価格 ダブル BidPrice1〜10 ダブル
LastPrice ダブル BidVolume1〜10 INT
TradNumber INT NumOrdersB1〜10 INT
TradVolume INT NumOrdersS1〜10 INT
売上高 ダブル 現地時間 時間

 

DolphinDBデータベースのデータコピー数は2に設定されています。これら2つのデータセットをDolphinDBに書き込んだ後、ディスク容量は10.6G、1つのデータは5.3Gしか使用せず、圧縮率は約8:1です。pickleファイルは圧縮ストレージを使用しません。テストでは、pickleファイルが圧縮された後、ロード時間が大幅に延長されたことがわかりました。

比較テストは、1日のデータを照会します。DolphinDB Python APIおよびpickleの場合、クライアントによって送信されたクエリから、受信されてPython pandasDataFrameオブジェクトに変換されたデータまでにかかった時間を記録します。

  • DolphinDB Python APIの場合、プロセス全体に3つのステップが含まれます。(1)DolphinDBデータベースからデータをクエリするのに時間がかかります。つまり、Python APIを使用せずにDolphinDBを使用して直接クエリを実行するのに時間がかかります。(2)クエリデータDolphinDBデータからのものですノードがPythonAPIクライアントに送信するのに必要な時間;(3)クライアントがデータをパンダのDataFrameに逆シリアル化するのに必要な時間。
  • pickleの場合、時間がかかるのは、pickleモジュールを使用してpickleデータファイルをロードするために必要な時間です。

2.テスト環境

テストで使用した3台のサーバーのハードウェア構成は次のとおりです。

ホスト:PowerEdge R730xd

CPU:E5-265024コア48スレッド

メモリ:512G

ハードディスク:HDD 1.8T * 12

ネットワーク:10ギガビットイーサネット

OS:CentOSLinuxリリース7.6.1810

このテストでは、DolphinDBマルチサーバークラスターモードを使用します。合計3台のサーバーが使用され、各サーバーは2つのデータノードを展開し、各ノードには2つの10K RPM HDDディスクが割り当てられ、メモリ使用制限は32Gで、スレッド数は16に設定されます。データベースのコピー数は2に設定されています。テストクライアントは、サーバーの1つに配置されます。

今回テストしたDolphinDBサーバーのバージョンは1.30.0で、DolphinDB用のPythonAPIのバージョンは1.30.0.4です。

3.試験方法

ファイルの読み取りと書き込みの後、オペレーティングシステムは対応するファイルをキャッシュします。キャッシュからのデータの読み取りは、メモリからのデータの読み取りと同等であり、テスト結果に影響します。したがって、各テストの前に、オペレーティングシステムとDolphinDBのキャッシュがクリアされます。比較のために、キャッシュを使用した場合のパフォーマンスもテストされます。つまり、ディスクIOのボトルネックがない場合です。

3.1DolphinDBのテスト

テストコードは次のとおりです。

#读取Level 1数据集一天的数据
timer t1 = select * from loadTable("dfs://TAQ", "quotes") where TradeDate = 2007.08.23

#读取Level 2数据集一天的数据
timer t2 = select * from loadTable("dfs://DataYesDB", "tick") where TradeDate = 2019.09.10

テスト手順は次のとおりです。

(1)Linuxコマンドを使用sudo sh -c "echo 1 > /proc/sys/vm/drop_caches"して、rootユーザーで実行する必要があるオペレーティングシステムのキャッシュクリアします。

(2)pnodeRun(clearAllCache)DolphinDBのデータベースキャッシュのクリーンアップを実行します。

(3)クエリスクリプトを実行します。今回は、オペレーティングシステムのキャッシュがない場合の結果です。

(4)pnodeRun(clearAllCache)DolphinDBデータベースキャッシュを再度クリーンアップします。

(5)クエリスクリプトを再度実行します。今回はオペレーティングシステムのキャッシュがある場合の結果です。

3.2DolphinDBのPythonAPIをテストする

テストコードは次のとおりです。

import dolphindb as ddb
import pandas as pd
import time

s = ddb.session()
s.connect("192.168.1.13",22172, "admin", "123456")

#读取Level 1数据集一天的数据
st1 = time.time()
quotes =s.run('''
select * from loadTable("dfs://TAQ", "quotes") where TradeDate = 2007.08.23
''')
et1 = time.time()
print(et1 - st1)

#读取Level 2数据集一天的数据
st = time.time()
tick = s.run('''
select * from loadTable("dfs://DataYesDB", "tick") where TradeDate = 2019.09.10
''')
et = time.time()
print(et-st)

テスト手順は次のとおりです。

(1)Linuxコマンドを使用sudo sh -c "echo 1 > /proc/sys/vm/drop_caches"して、rootユーザーで実行する必要があるオペレーティングシステムのキャッシュクリアします。

(2)pnodeRun(clearAllCache)DolphinDBのデータベースキャッシュのクリーンアップを実行します。

(3)クエリスクリプトを実行します。今回は、オペレーティングシステムのキャッシュがない場合の結果です。

(4)pnodeRun(clearAllCache)DolphinDBデータベースキャッシュを再度クリーンアップします。

(5)クエリスクリプトを再度実行します。今回はオペレーティングシステムのキャッシュがある場合の結果です。

3.3ピクルスファイルをテストする

ピクルステストコードは次のとおりです。

import dolphindb as ddb
import pandas as pd
import time
import pickle

s = ddb.session()
s.connect("192.168.1.13", 22172, "admin", "123456")
tick = s.run('''
select * from loadTable("dfs://DataYesDB", "tick") where TradeDate = 2019.09.10
''')
quotes =s.run('''
select * from loadTable("dfs://TAQ", "quotes")
''')

#将数据集1的Level 1的数据转换为pkl文件
quotes.to_pickle("taq.pkl")

#将数据集2的Level 2一天的数据转换为pkl文件
tick.to_pickle("level2.pkl")

#使用pickle模块读取数据集1的Level 1一天的数据
st1 = time.time()
f = open('taq.pkl', 'rb')
c = pickle.load(f)
et1 = time.time()
print(et1 - st1)
f.close()

#使用pickle模块读取数据集2的Level 2一天的数据
f = open('level2.pkl', 'rb')
st = time.time()
c = pickle.load(f)
et = time.time()
print(et - st)
f.close()

テスト手順:

(1)テストコードが初めて実行されます。これは、オペレーティングシステムキャッシュなしのpickleの結果です。

(2)pickleモジュールのスクリプトを実行して、2回目のデータの読み取りを行います。今回は、オペレーティングシステムのキャッシュがある場合のpickleの結果です。

4.テスト結果の分析

以下は、米国株式市場のレベル1データセットを読み取ったテスト結果です。

シーン キャッシュなし(秒) キャッシュあり(秒)
DolphinDBデータベースクエリ 6 6
DolphinDB Python API 38 35
漬物 72 34

以下は、中国の株式市場のレベル2データセットのテスト結果を示しています。

シーン キャッシュなし(秒) キャッシュあり(秒)
DolphinDBデータベースクエリ 5 5
DolphinDB Python API 22 22
漬物 70 20

4.1DolphinDBのパフォーマンス上の利点の源

从测试结果看,直接从DolphinDB数据库查询,速度最快,超过pickle查询的10倍以上。在没有操作系统缓存的情况下(大部分的实际场景),DolphinDB Python API的查询速度明显优于pickle。在有缓存的情况下,两者相差无几。有无缓存,对DolphinDB Python API没有显著的影响,但是对pickle却有显著的影响。这些结果从DolphinDB Python API和pickle的耗时构成,可以得到进一步的解释。

pickle文件存储在单个HDD裸盘上,读取性能的极限速度在每秒150MB~200MB之间。读取一个12G大小的pickle文件,需要70秒左右的时间。可见在当前配置下,pickle文件读取的瓶颈在磁盘IO。因此当有操作系统缓存时(等价于从内存读取数据),性能会有大幅提升,耗时主要是pickle文件的反序列化。要提高读取pickle文件的性能,关键在于提升存储介质的吞吐量,譬如改用SSD或者磁盘阵列。

DolphinDB数据库与Python API客户端之间采用了改良的pickle协议。如第1章中所述,使用DolphinDB Python API进行查询可分为3个步骤,其中步骤2和3是可以同时进行的,即一边传输一边反序列化。因此使用Python API从DolphinDB数据库查询的总耗时约等于第1个步骤查询耗时与第2和3个步骤的较大值之和。在两个数据集的测试中,无论是否有缓存,DolphinDB数据库查询部分的耗时均在5~6秒左右。一天的数据量在DolphinDB数据库中约为8G,分三个节点存储,每个节点的数据量约为2.7G。从一个节点查询,需要传输的数据量约为5.4G(本地节点不需要网络传输),对万兆以太网而言,对应5~6秒的传输时间。因此当前的配置下,DolphinDB数据库查询的瓶颈在于网络,而不是磁盘IO。一天的数据量压缩之后约1.4G,分布于12个磁盘中,按照每个磁盘100mb/s的吞吐量,加载一天数据的磁盘时间约在1.2秒,远远低于网络需要的5~6秒。简而言之,DolphinDB时序数据库通过压缩技术和分布式技术,大大缩短了加载一天的金融市场数据的时间,使得磁盘IO不再成为数据查询的瓶颈。

如前所述,DolphinDB Python API的反序列化也采用了pickle协议,但是进行了改良,比原版的pickle协议节约了5~6秒时间,正好抵消了数据库查询消耗的5~6秒时间。所以在有缓存的情况下,pickle和DolphinDB Python API耗时几乎相等。如果要进一步提升DolphinDB Python API的查询性能,有两个方向:(1)采用更高速的网络,譬如从10G升级到100G,第一步查询的耗时可能从现在的5~6秒缩减到2秒。(2)继续改良pickle协议。

4.2 字符串对性能的影响

以数据集1为例,在没有缓存的情况下,DolphinDB Python API总共耗时38秒,但是数据库端的耗时仅5~6秒,80%的时间耗费在pickle反序列化上。通过进一步分析,我们发现字符串类型对pickle的反序列化有极大的影响。如果查询时,剔除两个字符串类型字段,数据集1的时间缩短到19秒,减少了一半。也就是说两个字符串字段,以20%的数据量,占了50%的耗时。数据集2总共78个字段,其中2个字段是字符串类型,如果不查询这两个字段,时间可从22秒缩减到20秒。

以下是读取美国股市Level 1(去除字符串字段)数据集的测试结果:

场景 无缓存 (秒) 有缓存(秒)
DolphinDB 19 18
pickle 56 16

以下是读取中国股市Level 2(去除字符串字段)数据集的测试结果:

场景 无缓存(秒) 有缓存(秒)
DolphinDB 20 20
pickle 66 18

剔除字符串字段,对提升pickle的查询也有帮助。在数据集1有缓存的情况下,耗时缩短一半。但是在没有缓存的情况下,提升有限,原因是瓶颈在磁盘IO。

这两个数据集中的字符串类型数据分别是股票ID和交易所名称。股票ID和交易所名称的个数极其有限,重复度非常高。DolphinDB数据库专门提供了一个数据类型SYMBOL用于优化存储此类数据。SYMBOL类型为一个具体的Vector或Table配备一个字典,存储全部不重复的字符串,Vector内部只存储字符串在字典中的索引。在前面的测试中,字符串类型数据已经启用了SYMBOL类型。如果改用STRING类型,DolphinDB的性能会降低。尽管通过SYMBOL类型的优化,为DolphinDB服务端的查询以及pickle的序列化节约了不少时间,但是pickle的反序列化这个步骤并没有充分利用SYMBOL带来的优势,存在大量的python对象多次copy,这是进一步优化的方向之一。

4.3 多任务并发下的性能对比

在实际工作中,经常会多个用户同时提交多个查询。为此我们进一步测试了DolphinDB Python API和pickle在并发查询下的性能。测试采用了数据集2。对于DolphinDB Python API,我们分别测试了连接本地服务器的数据节点进行并发查询,以及连接不同服务器的数据节点进行并发查询的性能。对于pickle,我们并发查询了同一个节点同一个磁盘的不同文件。由于全局锁的限制,测试时,开启多个Python进程从pickle文件或DolphinDB数据库加载数据。下表是三个连接并发查询数据集2中不同日期的Level 2数据的耗时。

场景 连接1(秒) 连接2(秒) 连接3(秒)
DolphinDB API 连接本地服务器数据节点 48 43 45
DolphinDB API 连接不同服务器数据节点 28 35 31
pickle 220 222 219

pickle的耗时线性的从70秒增加了到了220秒。由于磁盘IO是pickle的瓶颈,在不增加磁盘吞吐量的情况下,读任务从1个增加到3个,耗时自然也增加到原先的3倍。当同一个客户端节点的三个连接连到不同的服务器数据节点时,耗时增加了50%(10s左右),主要原因是客户端节点的网络达到了瓶颈。当同一个客户端节点的三个连接接入到同一个服务器数据节点时,耗时增加了100%(22s左右),主要原因是客户端节点和接入的数据节点的网络同时达到了瓶颈。

如果要进一步提升DolphinDB并发的多任务查询性能,最直接的办法就是升级网络,譬如将万兆以太网升级成10万兆以太网。另一个方法是在数据节点之间以及数据节点和客户端之间传输数据时引入压缩技术,通过额外的CPU开销提升网络传输的效率,推迟瓶颈的到来。

5. 库内分析的必要性

从前面的测试我们可以看到,无论单任务还是多任务并发,DolphinDB数据库端的查询耗时占整个查询耗时的20%左右。因此,如果分析计算能够在数据库内直接完成,或者数据清洗工作在数据库内完成并降低需要传输的数据量,可以大大降低耗时。例如对数据集1的查询耗时38秒,而在DolphinDB数据库端的查询只需5~6秒。即使这5~6秒也是因为网络瓶颈造成的,在数据库集群的每一个节点上取数据的时间小于2秒。如果在每一个节点上完成相应的统计分析,只把最后少量的结果合并,总耗时约为2秒左右。但是使用Python API从DolphinDB数据库获取数据,然后再用pandas的单线程来完成数据分析,总耗时约为50秒左右。由此可见,面对海量的结构化数据,库内分析可以大幅提高系统的性能。

为支持时序数据的库内分析,DolphinDB内置了一门完整的多范式脚本语言,包括千余个内置函数,对时间序列、面板数据、矩阵的各种操作如聚合、滑动窗口分析、关联、Pivoting、机器学习等量化金融常用功能均可在DolphinDB数据库内直接完成。

6. 结论和展望

  • 数据库在提供数据管理的便捷、安全、可靠等优势的同时,在性能上超越操作系统裸文件业已可行。这主要得益于分布式技术、压缩技术、列式存储技术的应用以及应用层协议的改进,使得磁盘IO可能不再成为一个数据库系统最先遇到的瓶颈。
  • 金融市场高频数据的时序特性,使得时序数据库DolphinDB成为其最新最有前景的解决方案。DolphinDB相比pickle这样的文件解决方案,不仅为金融市场高频数据带来了管理上的便利和性能上的突破,其内置的强大的时间序列数据、面板数据处理能力更为金融的应用开发带来了极大的便利。
  • 使用Python API进行数据查询的整个链路中,DolphinDB数据库查询的耗时只占了很小的一部分,大部分时间耗费在最后一公里,即客户端的网络传输和数据序列化/反序列化。要突破这个瓶颈,有几个发展思路:(1)采用数据库内分析技术,数据清洗和基本的数据分析功能选择在数据库内完成,使用分布式数据库的计算能力缩短数据处理时间,并且大幅降低网络传输的数据量。(2)启用类似Apache Arrow类似的通用内存数据格式,降低各应用之间序列化/反序列化的开销。
  • 随着数据库技术的发展,尤其是分布式技术的推进,万兆(10G)网络会比预期更早成为数据库系统的瓶颈。在建设企业内网,尤其在部署高性能数据库集群时,可以开始考虑使用10万兆(100G)以太网。
  • 数据压缩可以提升磁盘IO和网络IO的效率,无论在大数据的存储还是传输过程中都非常重要。
  • 字符串类型对数据系统性能有非常大的负面影响。由于字符串类型长度不一致,在内存中不能连续存储(通常每个元素使用独立的对象存储),内存分配和释放的压力巨大,内存使用效率不高,CPU处理效率低下。长度不一致,也导致无法在磁盘存储中随机读取字符串元素。因此,数据系统的设计中尽可能避免使用字符串类型。如果字符串类型的重复度较高,建议使用类似DolphinDB中的SYMBOL类型替代。

おすすめ

転載: blog.csdn.net/qq_41996852/article/details/112344886