Coursera-Deep Learning専門コース(1):ニューラルネットワークとDeep Learning-weak2プログラミングの割り当て

numpyを使用したPythonの基本(オプション)

学習目標
①ロジスティック回帰を使用
する コスト関数のコスト関数を最小化する方法を学ぶパラメーターを更新するためのコスト関数の導関数を
理解する**

1-numpyで基本的な関数を構築する

1.1-シグモイド関数、np.exp()

ここに写真の説明を書きます

# GRADED FUNCTION: basic_sigmoid

import math

def basic_sigmoid(x):
    """
    Compute sigmoid of x.
    Arguments:
    x -- A scalar
    Return:
    s -- sigmoid(x)
    """
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+math.exp(-x))
    ### END CODE HERE ###
    return s
basic_sigmoid(3)

0.9525741268224334

# GRADED FUNCTION: sigmoid
import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()
def sigmoid(x):
    """
    Compute the sigmoid of x
    Arguments:
    x -- A scalar or numpy array of any size
    Return:
    s -- sigmoid(x)
    """
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+np.exp(-x))
    ### END CODE HERE ###
    return s

1.2-シグモイド勾配

# GRADED FUNCTION: sigmoid_derivative
def sigmoid_derivative(x):
    """
    Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
    You can store the output of the sigmoid function into variables and then use it to calculate the gradient. 
    Arguments:
    x -- A scalar or numpy array
    Return:
    ds -- Your computed gradient.
    """
    ### START CODE HERE ### (≈ 2 lines of code)
    s = sigmoid(x)
    ds = s*(1-s)
    ### END CODE HERE ###
    return ds

1.3-配列の変形

# GRADED FUNCTION: image2vector
def image2vector(image):
    """
    Argument:
    image -- a numpy array of shape (length, height, depth)
    Returns:
    v -- a vector of shape (length*height*depth, 1)
    """
    ### START CODE HERE ### (≈ 1 line of code)
    v = image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)
    ### END CODE HERE ###
    return v
# This is a 3 by 3 by 2 array, typically images will be (num_px_x, num_px_y,3) where 3 represents the RGB values
image = np.array([[[ 0.67826139,  0.29380381],
        [ 0.90714982,  0.52835647],
        [ 0.4215251 ,  0.45017551]],
       [[ 0.92814219,  0.96677647],
        [ 0.85304703,  0.52351845],
        [ 0.19981397,  0.27417313]],
       [[ 0.60659855,  0.00533165],
        [ 0.10820313,  0.49978937],
        [ 0.34144279,  0.94630077]]])
print ("image2vector(image) = " + str(image2vector(image)))

1.4-行の正規化

# GRADED FUNCTION: normalizeRows
def normalizeRows(x):
    """
    Implement a function that normalizes each row of the matrix x (to have unit length).
    Argument:
    x -- A numpy matrix of shape (n, m)
    Returns:
    x -- The normalized (by row) numpy matrix. You are allowed to modify x.
    """
    ### START CODE HERE ### (≈ 2 lines of code)
    # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
    x_norm = np.linalg.norm(x,ord=2,axis=1,keepdims=True)
    # Divide x by its norm.
    x = x/x_norm
    ### END CODE HERE ###
    return x

1.5-放送とソフトマックス機能

# GRADED FUNCTION: softmax
def softmax(x):
    """Calculates the softmax for each row of the input x.
    Your code should work for a row vector and also for matrices of shape (n, m).
    Argument:
    x -- A numpy matrix of shape (n,m)
    Returns:
    s -- A numpy matrix equal to the softmax of x, of shape (n,m)
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    # Apply exp() element-wise to x. Use np.exp(...).
    x_exp = np.exp(x)
    # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
    x_sum = np.sum(x_exp,axis=1,keepdims=True)
    # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
    s = x_exp/x_sum
    ### END CODE HERE ###
    return s

2ベクトル化

2.1 L1およびL2損失関数を実装する

ここに写真の説明を書きます

# GRADED FUNCTION: L1
def L1(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    Returns:
    loss -- the value of the L1 loss function defined above
    """
    ### START CODE HERE ### (≈ 1 line of code)
    loss = np.sum(abs(y-yhat))
    ### END CODE HERE ###
    return loss

ここに写真の説明を書きます

# GRADED FUNCTION: L2
def L2(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    Returns:
    loss -- the value of the L2 loss function defined above
    """
    ### START CODE HERE ### (≈ 1 line of code)
    loss = np.dot(y-yhat,y-yhat)
    ### END CODE HERE ###
    return loss

ニューラルネットワークの考え方によるロジスティック回帰

1-パッケージ

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
%matplotlib inline

2-問題セットの概要

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
# Example of a picture
index = 25
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")

ここに写真の説明を書きます

### START CODE HERE ### (≈ 3 lines of code)
m_train = 209
m_test = 50
num_px = 64
### END CODE HERE ###
print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
# Reshape the training and test examples
### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
### END CODE HERE ###
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))

3-学習アルゴリズムの一般的なアーキテクチャ

ここに写真の説明を書きます

4-アルゴリズムの一部を構築する

4.1-ヘルパー関数

# GRADED FUNCTION: sigmoid
def sigmoid(z):
    """
    Compute the sigmoid of z
    Arguments:
    z -- A scalar or numpy array of any size.
    Return:
    s -- sigmoid(z)
    """
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+np.exp(-z))
    ### END CODE HERE ###
    return s

4.2-パラメータの初期化

# GRADED FUNCTION: initialize_with_zeros
def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. 
    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)
    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """
    ### START CODE HERE ### (≈ 1 line of code)
    w = np.zeros((dim,1))
    b = 0
    ### END CODE HERE ###
    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    return w, b

4.3-順方向および逆方向の伝播

def propagate(w, b, X, Y):
    """
    Implement the cost function and its gradient for the propagation explained above
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    Tips:
    - Write your code step by step for the propagation. np.log(), np.dot()
    """
    m = X.shape[1]
    # FORWARD PROPAGATION (FROM X TO COST)
    ### START CODE HERE ### (≈ 2 lines of code)
    A = sigmoid(np.dot(w.T,X)+b)                                    # compute activation
    cost = -1/m*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))                               # compute cost
    ### END CODE HERE ###
    # BACKWARD PROPAGATION (TO FIND GRAD)
    ### START CODE HERE ### (≈ 2 lines of code)
    dw = 1/m*np.dot(X,(A-Y).T)
    db = 1/m*np.sum(A-Y)
    ### END CODE HERE ###
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    grads = {"dw": dw,
             "db": db}
    return grads, cost

d)最適化

段階的関数:最適化

def optimize(w、b、X、Y、num_iterations、learning_rate、print_cost = False):
“””
この関数は、勾配降下アルゴリズムを実行してwとbを最適化します

Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps  
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
Tips:
You basically need to write down two steps and iterate through them:
    1) Calculate the cost and the gradient for the current parameters. Use propagate().
    2) Update the parameters using gradient descent rule for w and b.
"""
costs = []
for i in range(num_iterations): 
    # Cost and gradient calculation (≈ 1-4 lines of code)
    ### START CODE HERE ### 
    grads, cost = propagate(w, b, X, Y)
    ### END CODE HERE ###
    # Retrieve derivatives from grads
    dw = grads["dw"]
    db = grads["db"]

    # update rule (≈ 2 lines of code)
    ### START CODE HERE ###
    w = w-learning_rate*dw
    b = b-learning_rate*db
    ### END CODE HERE ###

    # Record the costs
    if i % 100 == 0:
        costs.append(cost)

    # Print the cost every 100 training examples
    if print_cost and i % 100 == 0:
        print ("Cost after iteration %i: %f" %(i, cost))

params = {"w": w,
          "b": b}

grads = {"dw": dw,
         "db": db}

return params, grads, costs
# GRADED FUNCTION: predict

def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)

    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''

    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)

    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    ### START CODE HERE ### (≈ 1 line of code)
    A = sigmoid(np.dot(w.T,X)+b)
    ### END CODE HERE ###

    for i in range(A.shape[1]):

        # Convert probabilities A[0,i] to actual predictions p[0,i]
        ### START CODE HERE ### (≈ 4 lines of code)
        if A[0,i]<= 0.5:
             Y_prediction[0,i]=0
        else:
             Y_prediction[0,i]=1
        ### END CODE HERE ###
    assert(Y_prediction.shape == (1, m))

    return Y_prediction

5-すべての関数をモデルにマージします

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    """
    Builds the logistic regression model by calling the function you've implemented previously

    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations

    Returns:
    d -- dictionary containing information about the model.
    """

    ### START CODE HERE ###

    # initialize parameters with zeros (≈ 1 line of code)
    w, b = initialize_with_zeros(X_train.shape[0])

    # Gradient descent (≈ 1 line of code)
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost = False)  
    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]

    # Predict test/train set examples (≈ 2 lines of code)
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)

    ### END CODE HERE ###

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}

    return d
# Example of a picture that was wrongly classified.
index = 17
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0,index]].decode("utf-8") +  "\" picture.")

y = 1、あなたはそれが「猫」の写真であると予測しました

# Plot learning curve (with costs)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

ここに写真の説明を書きます

6-さらなる分析(オプション/段階的でない演習)

学習率αの可能な選択肢を調べる

learning_rates = [0.01, 0.001, 0.005,0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

ここに写真の説明を書きます

7-独自のイメージでテストする(オプション/段階的でない演習)

## START CODE HERE ## (PUT YOUR IMAGE NAME) 
my_image = "cat.2.jpg"   # change this to the name of your image file 
## END CODE HERE ##
# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")
元の記事を34件公開 賞賛された4件 30,000回以上の閲覧

おすすめ

転載: blog.csdn.net/leaeason/article/details/78261746