Detección de objetivos de paleta voladora de Baidu Combate real YOLOv3: registro de aprendizaje de detección de plagas de hojas

Todo el proceso de desarrollo de tareas de visión general:
inserte la descripción de la imagen aquí

1. Procesamiento de datos

Estructura del conjunto de datos:
inserte la descripción de la imagen aquí
insectos contiene tres carpetas de tren, val y prueba. Las anotaciones de las imágenes se almacenan en el directorio train/annotations/xmls. Cada archivo xml es una descripción de una imagen, que incluye información como el tamaño de la imagen, el nombre del insecto incluido y la posición donde aparece en la imagen.

Los conjuntos de datos de detección de objetivos comunes como [x1, y1, x2, y2] utilizados por Pascal VOC representan el cuadro delimitador del objeto, y [x1, y1, w, h] utilizados por COCO representan el cuadro delimitador del objeto.
inserte la descripción de la imagen aquí

1.1 Preprocesamiento del conjunto de datos

(1) Leer imágenes y etiquetas a través de la descripción de los registros.

# 数据读取
import cv2

def get_bbox(gt_bbox, gt_class):
    # 对于一般的检测任务来说,一张图片上往往会有多个目标物体
    # 设置参数MAX_NUM = 50, 即一张图片最多取50个真实框;如果真实
    # 框的数目少于50个,则将不足部分的gt_bbox, gt_class和gt_score的各项数值全设置为0
    MAX_NUM = 50
    gt_bbox2 = np.zeros((MAX_NUM, 4))
    gt_class2 = np.zeros((MAX_NUM,))
    for i in range(len(gt_bbox)):
        gt_bbox2[i, :] = gt_bbox[i, :]
        gt_class2[i] = gt_class[i]
        if i >= MAX_NUM:
            break
    return gt_bbox2, gt_class2

def get_img_data_from_file(record):
    """
    record is a dict as following,
      record = {
            'im_file': img_file,
            'im_id': im_id,
            'h': im_h,
            'w': im_w,
            'is_crowd': is_crowd,
            'gt_class': gt_class,
            'gt_bbox': gt_bbox,
            'gt_poly': [],
            'difficult': difficult
            }
    """
    im_file = record['im_file']
    h = record['h']
    w = record['w']
    is_crowd = record['is_crowd']
    gt_class = record['gt_class']
    gt_bbox = record['gt_bbox']
    difficult = record['difficult']

    img = cv2.imread(im_file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # check if h and w in record equals that read from img
    assert img.shape[0] == int(h), \
             "image height of {} inconsistent in record({}) and img file({})".format(
               im_file, h, img.shape[0])

    assert img.shape[1] == int(w), \
             "image width of {} inconsistent in record({}) and img file({})".format(
               im_file, w, img.shape[1])

    gt_boxes, gt_labels = get_bbox(gt_bbox, gt_class)


(2) Mejora de datos
Lleve a cabo los siguientes métodos de mejora:
cambiar aleatoriamente la luz y la oscuridad, el contraste y el color,
relleno aleatorio,
zoom aleatorio,
volteo aleatorio
, alteración aleatoria del orden de fotogramas reales

# 图像增广方法汇总
def image_augment(img, gtboxes, gtlabels, size, means=None):
    # 随机改变亮暗、对比度和颜色等
    img = random_distort(img)
    # 随机填充
    img, gtboxes = random_expand(img, gtboxes, fill=means)
    # 随机缩放
    img = random_interp(img, size)
    # 随机翻转
    img, gtboxes = random_flip(img, gtboxes)
    # 随机打乱真实框排列顺序
    gtboxes, gtlabels = shuffle_gtbox(gtboxes, gtlabels)

    return img.astype('float32'), gtboxes.astype('float32'), gtlabels.astype('int32')

img_enhance, img_box, img_label = image_augment(srcimg, srcimg_gtbox, srcimg_label, size=320)
visualize(srcimg, img_enhance)

(3) parte del conjunto de datos

import paddle

# 定义数据读取类,继承Paddle.io.Dataset
class TrainDataset(paddle.io.Dataset):
    def  __init__(self, datadir, mode='train'):
        self.datadir = datadir
        cname2cid = get_insect_names()
        self.records = get_annotations(cname2cid, datadir)
        self.img_size = 640  #get_img_size(mode)

    def __getitem__(self, idx):
        record = self.records[idx]
        # print("print: ", record)
        img, gt_bbox, gt_labels, im_shape = get_img_data(record, size=self.img_size)

        return img, gt_bbox, gt_labels, np.array(im_shape)

    def __len__(self):
        return len(self.records)

# 创建数据读取类
train_dataset = TrainDataset(TRAINDIR, mode='train')

# 使用paddle.io.DataLoader创建数据读取器,并设置batchsize,进程数量num_workers等参数
train_loader = paddle.io.DataLoader(train_dataset, batch_size=2, shuffle=True, num_workers=2, drop_last=True)

2. Función de pérdida

def get_loss(num_classes, outputs, gtbox, gtlabel, gtscore=None,
                anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326],
                anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                ignore_thresh=0.7,
                use_label_smooth=False):
    """
    使用paddle.vision.ops.yolo_loss
    """
    losses = []
    downsample = 32
    for i, out in enumerate(outputs): # 对三个层级分别求损失函数
        anchor_mask_i = anchor_masks[i]
        loss = paddle.vision.ops.yolo_loss(
                x=out,  # out是P0, P1, P2中的一个
                gt_box=gtbox,  # 真实框坐标
                gt_label=gtlabel,  # 真实框类别
                gt_score=gtscore,  # 真实框得分,使用mixup训练技巧时需要,不使用该技巧时直接设置为1,形状与gtlabel相同
                anchors=anchors,   # 锚框尺寸,包含[w0, h0, w1, h1, ..., w8, h8]共9个锚框的尺寸
                anchor_mask=anchor_mask_i, # 筛选锚框的mask,例如anchor_mask_i=[3, 4, 5],将anchors中第3、4、5个锚框挑选出来给该层级使用
                class_num=num_classes, # 分类类别数
                ignore_thresh=ignore_thresh, # 当预测框与真实框IoU > ignore_thresh,标注objectness = -1
                downsample_ratio=downsample, # 特征图相对于原图缩小的倍数,例如P0是32, P1是16,P2是8
                use_label_smooth=False)      # 使用label_smooth训练技巧时会用到,这里没用此技巧,直接设置为False
        losses.append(paddle.mean(loss))  #mean对每张图片求和
        downsample = downsample // 2 # 下一级特征图的缩放倍数会减半
    return sum(losses) # 对每个层级求和

También puede utilizar el paquete lossAPI
1.x de Flying Paddle: mapa de características de salida.
2.gt_box: Caja real.
3.gt_label: etiqueta del cuadro de verdad del terreno.
4.ignore_thresh, cuando el umbral de IoU del fotograma predicho y el fotograma real excede ignore_thresh, no se utiliza como muestra negativa y se establece en 0,7 en el modelo YOLOv3.
5.downsample_ratio, la relación de reducción de resolución del mapa de características P0, que es 32 cuando se utiliza la red troncal Darknet53.
6.gt_score, la confianza del cuadro real, utilizada cuando se utiliza la técnica de mezcla.
7.use_label_smooth, una técnica de entrenamiento, si no se usa, se establece en Falso.
8.nombre, el nombre de la capa, como 'yolov3_loss', el valor predeterminado es Ninguno, generalmente no es necesario configurarlo.

paddle.vision.ops.yolo_loss(x, gt_box, gt_label, anchors, anchor_mask, class_num, ignore_thresh, downsample_ratio, gt_score=None, use_label_smooth=True, name=None, scale_x_y=1.0)

3. Entrenamiento modelo

inserte la descripción de la imagen aquí

############# 这段代码在本地机器上运行请慎重,容易造成死机,我们可以使用较小的MAX_EPOCH运行#######################

import time
import os
import paddle

def get_lr(base_lr = 0.0001, lr_decay = 0.1):
    bd = [10000, 20000]
    lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
    learning_rate = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)
    return learning_rate

# MAX_EPOCH = 200
MAX_EPOCH = 1

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

IGNORE_THRESH = .7
NUM_CLASSES = 7

TRAINDIR = '/home/aistudio/work/insects/train'
TESTDIR = '/home/aistudio/work/insects/test'
VALIDDIR = '/home/aistudio/work/insects/val'
paddle.set_device("gpu:0")
# 创建数据读取类
train_dataset = TrainDataset(TRAINDIR, mode='train')
valid_dataset = TrainDataset(VALIDDIR, mode='valid')
test_dataset = TrainDataset(VALIDDIR, mode='valid')
# 使用paddle.io.DataLoader创建数据读取器,并设置batchsize,进程数量num_workers等参数
train_loader = paddle.io.DataLoader(train_dataset, batch_size=10, shuffle=True, num_workers=0, drop_last=True, use_shared_memory=False)
valid_loader = paddle.io.DataLoader(valid_dataset, batch_size=10, shuffle=False, num_workers=0, drop_last=False, use_shared_memory=False)
model = YOLOv3(num_classes = NUM_CLASSES)  #创建模型
learning_rate = get_lr()
opt = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                momentum=0.9,
                weight_decay=paddle.regularizer.L2Decay(0.0005),
                parameters=model.parameters())  #创建优化器
# opt = paddle.optimizer.Adam(learning_rate=learning_rate, weight_decay=paddle.regularizer.L2Decay(0.0005), parameters=model.parameters())


if __name__ == '__main__':
    for epoch in range(MAX_EPOCH):
        for i, data in enumerate(train_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)  #前向传播,输出[P0, P1, P2]
            loss = get_loss(NUM_CLASSES, outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)        # 计算损失函数

            loss.backward()    # 反向传播计算梯度
            opt.step()  # 更新参数
            opt.clear_grad()
            if i % 10 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[TRAIN]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))

        # save params of model
        if (epoch % 5 == 0) or (epoch == MAX_EPOCH -1):
            paddle.save(model.state_dict(), 'yolo_epoch{}'.format(epoch))

        # 每个epoch结束之后在验证集上进行测试
        model.eval()
        for i, data in enumerate(valid_loader()):
            img, gt_boxes, gt_labels, img_scale = data
            gt_scores = np.ones(gt_labels.shape).astype('float32')
            gt_scores = paddle.to_tensor(gt_scores)
            img = paddle.to_tensor(img)
            gt_boxes = paddle.to_tensor(gt_boxes)
            gt_labels = paddle.to_tensor(gt_labels)
            outputs = model(img)
            loss = get_loss(NUM_CLASSES,outputs, gt_boxes, gt_labels, gtscore=gt_scores,
                                  anchors = ANCHORS,
                                  anchor_masks = ANCHOR_MASKS,
                                  ignore_thresh=IGNORE_THRESH,
                                  use_label_smooth=False)
            if i % 1 == 0:
                timestring = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
                print('{}[VALID]epoch {}, iter {}, output loss: {}'.format(timestring, epoch, i, loss.numpy()))

4. Evaluación del modelo

Cuando el conjunto de datos contiene múltiples categorías de objetos, se requiere una supresión no máxima de múltiples categorías. El código de implementación se muestra en multiclass_nms a continuación.

# 计算IoU,矩形框的坐标形式为xyxy,这个函数会被保存在box_utils.py文件中
def box_iou_xyxy(box1, box2):
    # 获取box1左上角和右下角的坐标
    x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]
    # 计算box1的面积
    s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)
    # 获取box2左上角和右下角的坐标
    x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]
    # 计算box2的面积
    s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)
    
    # 计算相交矩形框的坐标
    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    # 计算相交矩形行的高度、宽度、面积
    inter_h = np.maximum(ymax - ymin + 1., 0.)
    inter_w = np.maximum(xmax - xmin + 1., 0.)
    intersection = inter_h * inter_w
    # 计算相并面积
    union = s1 + s2 - intersection
    # 计算交并比
    iou = intersection / union
    return iou

# 非极大值抑制
def nms(bboxes, scores, score_thresh, nms_thresh, pre_nms_topk, i=0, c=0):
    """
    nms
    """
    inds = np.argsort(scores)
    inds = inds[::-1]
    keep_inds = []
    while(len(inds) > 0):
        cur_ind = inds[0]
        cur_score = scores[cur_ind]
        # if score of the box is less than score_thresh, just drop it
        if cur_score < score_thresh:
            break

        keep = True
        for ind in keep_inds:
            current_box = bboxes[cur_ind]
            remain_box = bboxes[ind]
            iou = box_iou_xyxy(current_box, remain_box)
            if iou > nms_thresh:
                keep = False
                break
        if i == 0 and c == 4 and cur_ind == 951:
            print('suppressed, ', keep, i, c, cur_ind, ind, iou)
        if keep:
            keep_inds.append(cur_ind)
        inds = inds[1:]

    return np.array(keep_inds)

# 多分类非极大值抑制
def multiclass_nms(bboxes, scores, score_thresh=0.01, nms_thresh=0.45, pre_nms_topk=1000, pos_nms_topk=100):
    """
    This is for multiclass_nms
    """
    batch_size = bboxes.shape[0]
    class_num = scores.shape[1]
    rets = []
    for i in range(batch_size):
        bboxes_i = bboxes[i]
        scores_i = scores[i]
        ret = []
        for c in range(class_num):
            scores_i_c = scores_i[c]
            keep_inds = nms(bboxes_i, scores_i_c, score_thresh, nms_thresh, pre_nms_topk, i=i, c=c)
            if len(keep_inds) < 1:
                continue
            keep_bboxes = bboxes_i[keep_inds]
            keep_scores = scores_i_c[keep_inds]
            keep_results = np.zeros([keep_scores.shape[0], 6])
            keep_results[:, 0] = c
            keep_results[:, 1] = keep_scores[:]
            keep_results[:, 2:6] = keep_bboxes[:, :]
            ret.append(keep_results)
        if len(ret) < 1:
            rets.append(ret)
            continue
        ret_i = np.concatenate(ret, axis=0)
        scores_i = ret_i[:, 1]
        if len(scores_i) > pos_nms_topk:
            inds = np.argsort(scores_i)[::-1]
            inds = inds[:pos_nms_topk]
            ret_i = ret_i[inds]

        rets.append(ret_i)

    return rets
import json
import paddle

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

VALID_THRESH = 0.01

NMS_TOPK = 400
NMS_POSK = 100
NMS_THRESH = 0.45

NUM_CLASSES = 7

# 在验证集val上评估训练模型
TESTDIR = '/home/aistudio/work/insects/val/images' #请将此目录修改成用户自己保存测试图片的路径
WEIGHT_FILE = '/home/aistudio/yolo_epoch50.pdparams' # 请将此文件名修改成用户自己训练好的权重参数存放路径


# 在测试集test上评估训练模型
# TESTDIR = '/home/aistudio/work/insects/test/images'
# WEIGHT_FILE = '/home/aistudio/yolo_epoch50.pdparams'

if __name__ == '__main__':
    model = YOLOv3(num_classes=NUM_CLASSES)
    params_file_path = WEIGHT_FILE
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)
    model.eval()

    total_results = []
    test_loader = test_data_loader(TESTDIR, batch_size= 1, mode='test')
    for i, data in enumerate(test_loader()):
        img_name, img_data, img_scale_data = data
        img = paddle.to_tensor(img_data)
        img_scale = paddle.to_tensor(img_scale_data)

        outputs = model.forward(img)
        bboxes, scores = model.get_pred(outputs,
                                 im_shape=img_scale,
                                 anchors=ANCHORS,
                                 anchor_masks=ANCHOR_MASKS,
                                 valid_thresh = VALID_THRESH)

        bboxes_data = bboxes.numpy()
        scores_data = scores.numpy()
        result = multiclass_nms(bboxes_data, scores_data,
                      score_thresh=VALID_THRESH, 
                      nms_thresh=NMS_THRESH, 
                      pre_nms_topk=NMS_TOPK, 
                      pos_nms_topk=NMS_POSK)
        for j in range(len(result)):
            result_j = result[j]
            img_name_j = img_name[j]
            total_results.append([img_name_j, result_j.tolist()])
        print('processed {} pictures'.format(len(total_results)))

    print('')
    json.dump(total_results, open('pred_results.json', 'w'))

5. Predicción del modelo

El proceso de predicción se puede dividir en dos pasos:
(1) Utilice la función get_pred para predecir la posición del cuadro y la puntuación de la categoría a la que pertenece.
(2) Utilice una supresión no máxima para eliminar los cuadros de predicción con grandes superposiciones.
inserte la descripción de la imagen aquí
1. Primero defina la función de dibujo para dibujar el cuadro de predicción:


import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.image import imread
import math

# 定义画图函数
INSECT_NAMES = ['Boerner', 'Leconte', 'Linnaeus', 
                'acuminatus', 'armandi', 'coleoptera', 'linnaeus']

# 定义画矩形框的函数 
def draw_rectangle(currentAxis, bbox, edgecolor = 'k', facecolor = 'y', fill=False, linestyle='-'):
    # currentAxis,坐标轴,通过plt.gca()获取
    # bbox,边界框,包含四个数值的list, [x1, y1, x2, y2]
    # edgecolor,边框线条颜色
    # facecolor,填充颜色
    # fill, 是否填充
    # linestype,边框线型
    # patches.Rectangle需要传入左上角坐标、矩形区域的宽度、高度等参数
    rect=patches.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0]+1, bbox[3]-bbox[1]+1, linewidth=1,
                           edgecolor=edgecolor,facecolor=facecolor,fill=fill, linestyle=linestyle)
    currentAxis.add_patch(rect)

# 定义绘制预测结果的函数
def draw_results(result, filename, draw_thresh=0.5):
    plt.figure(figsize=(10, 10))
    im = cv2.imread(filename)
    plt.imshow(im)
    currentAxis=plt.gca()
    colors = ['r', 'g', 'b', 'k', 'y', 'c', 'purple']
    for item in result:
        box = item[2:6]
        label = int(item[0])
        name = INSECT_NAMES[label]
        if item[1] > draw_thresh:
            draw_rectangle(currentAxis, box, edgecolor = colors[label])
            plt.text(box[0], box[1], name, fontsize=12, color=colors[label])

2. Lea la imagen especificada, introdúzcala en la red y calcule el cuadro de predicción y la puntuación, y luego utilice la supresión de valor no máximo de clases múltiples para eliminar los cuadros redundantes. Muestra el resultado final en un gráfico.

import json

import paddle

ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
VALID_THRESH = 0.01
NMS_TOPK = 400
NMS_POSK = 100
NMS_THRESH = 0.45

NUM_CLASSES = 7
if __name__ == '__main__':
    image_name = '/home/aistudio/work/insects/test/images/2642.jpeg'
    params_file_path = '/home/aistudio/yolo_epoch50.pdparams'

    model = YOLOv3(num_classes=NUM_CLASSES)
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)
    model.eval()

    total_results = []
    test_loader = test_data_loader(image_name, mode='test')
    for i, data in enumerate(test_loader()):
        img_name, img_data, img_scale_data = data
        img = paddle.to_tensor(img_data)
        img_scale = paddle.to_tensor(img_scale_data)

        outputs = model.forward(img)
        bboxes, scores = model.get_pred(outputs,
                                 im_shape=img_scale,
                                 anchors=ANCHORS,
                                 anchor_masks=ANCHOR_MASKS,
                                 valid_thresh = VALID_THRESH)

        bboxes_data = bboxes.numpy()
        scores_data = scores.numpy()
        results = multiclass_nms(bboxes_data, scores_data,
                      score_thresh=VALID_THRESH, 
                      nms_thresh=NMS_THRESH, 
                      pre_nms_topk=NMS_TOPK, 
                      pos_nms_topk=NMS_POSK)

result = results[0]
draw_results(result, image_name, draw_thresh=0.4)

inserte la descripción de la imagen aquí

Supongo que te gusta

Origin blog.csdn.net/m0_63495706/article/details/130452138
Recomendado
Clasificación