Combate MobileNet: versión tensorflow2.X, tarea de clasificación de imágenes MobileNetV2 (conjunto de datos pequeño)

¡Acostúmbrate a escribir juntos! Este es el día 11 de mi participación en el "Nuevo plan diario de Nuggets · Desafío de actualización de abril", haga clic para ver los detalles del evento .

Resumen

En este ejemplo, parte de los datos en el conjunto de datos de plántulas de plantas se extrae como un conjunto de datos. Hay 12 tipos de conjuntos de datos. Hoy, implementaré la tarea de clasificación de imágenes de la versión tensorflow2.X con usted. El modelo de clasificación usa MobileNetV2. MobileNetV2 agrega sobre la base de MobileNet V1. Linear Bottleneck y Inverted Residual son redes livianas adecuadas para escenarios reales de aplicaciones móviles.

Para obtener una introducción a MobileNetV2, consulte mi artículo anterior:

blog.csdn.net/hhhhhhhhhhw…

De este artículo puedes aprender:

1. Cómo cargar datos de imagen y procesar los datos.

2. Si la etiqueta se convierte a una codificación onehot

3. Cómo utilizar el aumento de datos.

4. Cómo usar la mezcla.

5. Cómo segmentar el conjunto de datos.

6. Cómo cargar el modelo preentrenado.

Estructura del proyecto

MobileNetV2_demo
├─data
│  ├─test
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet
├─train.py
├─test1.py
└─test.py
复制代码

tren

1, confusión

Mixup es un método de aumento de datos no convencional, un principio de aumento de datos simple independiente de los datos, que construye nuevas muestras de entrenamiento y etiquetas por interpolación lineal. El procesamiento final de las etiquetas se muestra en la siguiente fórmula, que es simple pero muy inusual para una estrategia de aumento.

imagen

( X i , y i ) \izquierda (x_{i},y_{i} \derecha) , ( X j , y j ) \izquierda (x_{j},y_{j} \derecha) son pares de muestras de entrenamiento (muestras de entrenamiento y sus etiquetas correspondientes) en el conjunto de datos original. en λ \lambda 是一个服从B分布的参数, λ B mi t a ( α , α ) \lambda\sim Beta\left ( \alpha ,\alpha \right ) 。Beta分布的概率密度函数如下图所示,其中 α [ 0 , + ] \alpha \in \left [ 0,+\infty \right ]

imagen

因此 α \alpha 是一个超参数,随着 α \alpha 的增大,网络的训练误差就会增加,而其泛化能力会随之增强。而当 α \alpha \rightarrow \infty 时,模型就会退化成最原始的训练策略。参考:www.jianshu.com/p/d22fcd86f…

新建mixupgenerator.py,插入一下代码:

import numpy as np


class MixupGenerator():
    def __init__(self, X_train, y_train, batch_size=32, alpha=0.2, shuffle=True, datagen=None):
        self.X_train = X_train
        self.y_train = y_train
        self.batch_size = batch_size
        self.alpha = alpha
        self.shuffle = shuffle
        self.sample_num = len(X_train)
        self.datagen = datagen

    def __call__(self):
        while True:
            indexes = self.__get_exploration_order()
            itr_num = int(len(indexes) // (self.batch_size * 2))

            for i in range(itr_num):
                batch_ids = indexes[i * self.batch_size * 2:(i + 1) * self.batch_size * 2]
                X, y = self.__data_generation(batch_ids)

                yield X, y

    def __get_exploration_order(self):
        indexes = np.arange(self.sample_num)

        if self.shuffle:
            np.random.shuffle(indexes)

        return indexes

    def __data_generation(self, batch_ids):
        _, h, w, c = self.X_train.shape
        l = np.random.beta(self.alpha, self.alpha, self.batch_size)
        X_l = l.reshape(self.batch_size, 1, 1, 1)
        y_l = l.reshape(self.batch_size, 1)

        X1 = self.X_train[batch_ids[:self.batch_size]]
        X2 = self.X_train[batch_ids[self.batch_size:]]
        X = X1 * X_l + X2 * (1 - X_l)

        if self.datagen:
            for i in range(self.batch_size):
                X[i] = self.datagen.random_transform(X[i])
                X[i] = self.datagen.standardize(X[i])

        if isinstance(self.y_train, list):
            y = []

            for y_train_ in self.y_train:
                y1 = y_train_[batch_ids[:self.batch_size]]
                y2 = y_train_[batch_ids[self.batch_size:]]
                y.append(y1 * y_l + y2 * (1 - y_l))
        else:
            y1 = self.y_train[batch_ids[:self.batch_size]]
            y2 = self.y_train[batch_ids[self.batch_size:]]
            y = y1 * y_l + y2 * (1 - y_l)

        return X, y
复制代码

2、 导入需要的数据包,设置全局参数

import numpy as np
from tensorflow.keras.optimizers import Adam
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.applications import MobileNetV2
import os
from tensorflow.python.keras.utils import np_utils
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.models import Sequential
from mixupgenerator import MixupGenerator

norm_size = 224
datapath = 'data/train'
EPOCHS = 20
INIT_LR = 1e-3
labelList = []
dicClass = {'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6,
            'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}
classnum = 12
batch_size = 16

复制代码

这里可以看出tensorflow2.0以上的版本集成了Keras,我们在使用的时候就不必单独安装Keras了,以前的代码升级到tensorflow2.0以上的版本将keras前面加上tensorflow即可。

tensorflow说完了,再说明一下几个重要的全局参数:

  • norm_size = 224 ,MobileNetV2默认的图片尺寸是224×224。

  • datapath = 'data/train', 设置图片存放的路径,在这里要说明一下如果图片很多,一定不要放在工程目录下,否则Pycharm加载工程的时候会浏览所有的图片,很慢很慢。

  • EPOCHS = 100, epochs的数量,关于epoch的设置多少合适,这个问题很纠结,一般情况设置300足够了,如果感觉没有训练好,再载入模型训练。

  • INIT_LR = 1e-3 ,学习率,一般情况从0.001开始逐渐降低,也别太小了到1e-6就可以了。

  • classnum = 12, 类别数量,数据集有12个类别,所有就定义12类。

  • batch_size = 16,batchsize,根据硬件的情况和数据集的大小设置,太小了loss浮动太大,太大了收敛不好,根据经验来,一般设置为2的次方。windows可以通过任务管理器查看显存的占用情况。

    imagen-20220126135414054

    Ubuntu可以使用nvidia-smi查看显存的占用。

    imagen-20220120064407104

3、 加载图片

处理图像的步骤:

  1. 读取图像
  2. 用指定的大小去resize图像。
  3. 将图像转为数组
  4. 图像归一化
  5. 使用np_utils.to_categorical方法将标签转为onehot编码

具体做法详见代码:

def loadImageData():
    imageList = []
    listClasses = os.listdir(datapath)# 类别文件夹
    print(listClasses)
    for class_name in listClasses:
        label_id = dicClass[class_name]
        class_path=os.path.join(datapath,class_name)
        image_names=os.listdir(class_path)
        for image_name in image_names:
            image_full_path = os.path.join(class_path, image_name)
            labelList.append(label_id)
            image = cv2.imdecode(np.fromfile(image_full_path, dtype=np.uint8), -1)
            image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
            if image.shape[2] >3:
                image=image[:,:,:3]
                print(image.shape)
            image = img_to_array(image)
            imageList.append(image)
    imageList = np.array(imageList) / 255.0
    return imageList


print("开始加载数据")
imageArr = loadImageData()
print(type(imageArr))
labelList = np.array(labelList)
print("加载数据完成")
print(labelList)
labelList = np_utils.to_categorical(labelList, classnum)
print(labelList)
复制代码

做好数据之后,我们需要切分训练集和测试集,一般按照4:1或者7:3的比例来切分。切分数据集使用train_test_split()方法,需要导入from sklearn.model_selection import train_test_split 包。例:

trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)
复制代码

4、图像增强

ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,samplewise_center
=False, featurewise_std_normalization=False, samplewise_std_normalization=False,zca_whitening=False,
 zca_epsilon=1e-06, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0,brightness_range=None, shear_range=0.0, zoom_range=0.0,channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None,data_format=None,validation_split=0.0)
复制代码

参数:

  • featurewise_center: Boolean. 对输入的图片每个通道减去每个通道对应均值。
  • samplewise_center: Boolan. 每张图片减去样本均值, 使得每个样本均值为0。
  • featurewise_std_normalization(): Boolean()
  • samplewise_std_normalization(): Boolean()
  • zca_epsilon(): Default 12-6
  • zca_whitening: Boolean. 去除样本之间的相关性
  • rotation_range(): 旋转范围
  • width_shift_range(): 水平平移范围
  • height_shift_range(): 垂直平移范围
  • shear_range(): float, 透视变换的范围
  • zoom_range(): 缩放范围
  • fill_mode: 填充模式, constant, nearest, reflect
  • cval: fill_mode == 'constant'的时候填充值
  • horizontal_flip(): 水平反转
  • vertical_flip(): 垂直翻转
  • preprocessing_function(): user提供的处理函数
  • data_format(): channels_first或者channels_last
  • validation_split(): 多少数据用于验证集

本例使用的图像增强代码如下:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   horizontal_flip=True)
val_datagen = ImageDataGenerator()  # 验证集不做图片增强
training_generator_mix = MixupGenerator(trainX, trainY, batch_size=batch_size, alpha=0.2, datagen=train_datagen)()
val_generator = val_datagen.flow(valX, valY, batch_size=batch_size, shuffle=True)
复制代码

注意:只在训练集上做增强,不在验证集上做增强。

5、 保留最好的模型和动态设置学习率

ModelCheckpoint:用来保存成绩最好的模型。

语法如下:

keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)
复制代码

该回调函数将在每个epoch后保存模型到filepath

filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入

例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。

参数

  • filename:字符串,保存模型的路径
  • monitor:需要监视的值
  • verbose:信息展示模式,0或1
  • save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
  • mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
  • save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
  • period:CheckPoint之间的间隔的epoch数

ReduceLROnPlateau:当评价指标不在提升时,减少学习率,语法如下:

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)
复制代码

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

本例代码如下:

checkpointer = ModelCheckpoint(filepath='best_model.hdf5',
                               monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')

reduce = ReduceLROnPlateau(monitor='val_accuracy', patience=10,
                           verbose=1,
                           factor=0.5,
                           min_lr=1e-6)
复制代码

6、建立模型并训练

model = Sequential()
model.add(MobileNetV2(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(classnum, activation='softmax'))
model.summary()
optimizer = Adam(learning_rate=INIT_LR)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])

history = model.fit(training_generator_mix,
                              steps_per_epoch=trainX.shape[0] / batch_size,
                              validation_data=val_generator,
                              epochs=EPOCHS,
                              validation_steps=valX.shape[0] / batch_size,
                              callbacks=[checkpointer, reduce])
model.save('my_model.h5')
print(history)
复制代码

运行结果:

随着训练次数的增加,准确率已经过达到了0.95。

imagen-20220203093510835

7、保留训练结果,并将其生成图片

loss_trend_graph_path = r"WW_loss.jpg"
acc_trend_graph_path = r"WW_acc.jpg"
import matplotlib.pyplot as plt

print("Now,we start drawing the loss and acc trends graph...")
# summarize history for accuracy
fig = plt.figure(1)
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.title("Model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(acc_trend_graph_path)
plt.close(1)
# summarize history for loss
fig = plt.figure(2)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("Model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(loss_trend_graph_path)
plt.close(2)
print("We are done, everything seems OK...")
# #windows系统设置10关机
#os.system("shutdown -s -t 10")
复制代码

结果:

imagen-20220203093652422

imagen-20220203093718299

测试部分

单张图片预测

1、导入依赖

import cv2
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array
from  tensorflow.keras.models import load_model
import time
复制代码

2、设置全局参数

这里注意,字典的顺序和训练时的顺序保持一致

norm_size=224
imagelist=[]
emotion_labels = {
    0: 'Black-grass',
    1: 'Charlock',
    2: 'Cleavers',
    3: 'Common Chickweed',
    4: 'Common wheat',
    5: 'Fat Hen',
    6: 'Loose Silky-bent',
    7: 'Maize',
    8: 'Scentless Mayweed',
    9: 'Shepherds Purse',
    10: 'Small-flowered Cranesbill',
    11: 'Sugar beet',
}
复制代码

3、加载模型

emotion_classifier=load_model("best_model.hdf5")
t1=time.time()
复制代码

4、处理图片

处理图片的逻辑和训练集也类似,步骤:

  • 读取图片
  • 将图片resize为norm_size×norm_size大小。
  • 将图片转为数组。
  • 放到imagelist中。
  • imagelist整体除以255,把数值缩放到0到1之间。
image = cv2.imdecode(np.fromfile('data/test/0a64e3e6c.png', dtype=np.uint8), -1)
# load the image, pre-process it, and store it in the data list
image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
image = img_to_array(image)
imagelist.append(image)
imageList = np.array(imagelist, dtype="float") / 255.0
复制代码

5、预测类别

预测类别,并获取最高类别的index。

out=emotion_classifier.predict(imageList)
print(out)
pre=np.argmax(out)
emotion = emotion_labels[pre]
t2=time.time()
print(emotion)
t3=t2-t1
print(t3)
复制代码

运行结果:

imagen-20220203093821103

批量预测

La diferencia entre la predicción por lotes y la predicción única radica principalmente en los datos de lectura y el procesamiento de la categoría de predicción una vez que se completa la predicción. Otros no se modifican.

paso:

  • Cargue el modelo.
  • El directorio donde se define el conjunto de prueba
  • Obtener imágenes en un directorio
  • ciclo ciclo fotos
    • leer imagen
    • cambiar el tamaño de la imagen
    • girar matriz
    • Ponlo en la lista de imágenes
  • Escala de 0 a 255.
  • predecir
emotion_classifier=load_model("best_model.hdf5")
t1=time.time()
predict_dir = 'data/test'
test11 = os.listdir(predict_dir)
for file in test11:
    filepath=os.path.join(predict_dir,file)

    image = cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), -1)
    # load the image, pre-process it, and store it in the data list
    image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
    image = img_to_array(image)
    imagelist.append(image)
imageList = np.array(imagelist, dtype="float") / 255.0
out = emotion_classifier.predict(imageList)
print(out)
pre = [np.argmax(i) for i in out]
复制代码

resultado de la operación:

imagen-20220203093932173Código completo: download.csdn.net/download/hh…

Supongo que te gusta

Origin juejin.im/post/7085496638554243086
Recomendado
Clasificación