lcd 驱动

1 LCD显示原理

在这里插入图片描述
   LCD驱动器:LCD驱动器一般与LCD面板集成在一起,面板需要一定的模拟电信号来控制液晶分子,LCD驱动器芯片负责给面板提供控制液晶分子的模拟电信号,驱动器的控制信号(数字信号)来自于LCD控制器的提供的接口。
  LCD控制器:LCD控制器集成在SoC内部,它负责通过数字接口向外部的LCD驱动器提供要显示的像素数字信号。它必须按照一定的时序和LCD驱动器通信,LCD控制器受SoC控制,SoC会从内存中拿出像素数据给LCD控制器并最终传给LCD驱动器。
  显存:SoC在内存中选一段内存,用来存放颜色数据,然后通过配置将LCD控制器和这一段内存连接起来,构成一个映射关系,一旦这个关系建立以后,LCD控制器就会自动从显存中读取像素数据传给LCD驱动器,LCD驱动器会自动的控制每个像素点的液晶分子,以形成最终的图像,建立这个映射以后就不需要SoC在来参与任何行为了。
  总结一下:SoC控制LCD液晶显示的过程分为两个部分:
  (1) SoC的LCD控制器引出一定的引脚与LCD驱动器连接,按照标准设置一定的时序;
  (2) 把LCD要显示的像素信息放入内存中,在通过设置LCD控制器中的寄存器,与LCD控制器建立映射;之后过程就是LCD控制器芯片与驱动器芯片自动完成的事情了,整个LCD图像的显示过程就是这样。

1.1调色板介绍

         假设某块LCD屏幕的每个像素点所需要的位数为16位(两个字节),此时如果显存让每个像素的位数正好为16位(两个字节),那么正好能够和LCD屏幕硬件要求一致;但如果为了节省内存,显存中使用把8位表示一个像素点,即不能够和LCD屏幕硬件相一致。直接使用会导致错误产生,因此得使用调色板。
  调色板可以理解为一块内存,存储颜色,它会根据显存中像素为索引,找到对应的颜色,然后通过LCD控制器发送给屏幕。
  比如,对应AT043TN24的4.3寸显示屏:
ARM9核的S3C2440芯片可通过内置的LCD控制器来实现对LCD显示的控制。以TFT LCD为例,S3C2440芯片的LCD控制器可以对TFT LCD提供1位、2位、4位、8位调色板彩色显示和16位、24位真彩色显示,并支持多种不同的屏幕尺寸。
  S3C2440的调色板其实是256个16位的存储单元,每个单元中存储有16位的颜色值。根据16位颜色数据中,RGB分量所占位数的不同, 调色板还可以采取5:6:5(R:G:B)和5:5:5:1(R:G:B:1)两种格式。当采用5:6:5(R:G:B)格式时,它的调色板如表1所示。
在这里插入图片描述
  表1中,第一列为颜色索引,中间三列是R,G,B三个颜色分量对应的数据位,分别是5位、6位和5位,最后一列是对应颜色条目的物理地址。当采用5:5:5:1(R:G:B:1)格式时,R,G,B三个颜色分量的数据位长度都是5位,最低位为1。

2LCD驱动编程框架

 由于我们需要使用内核系统的GUI(图形界面接口),因此使用LCD设备驱动程序的frambuffer接口。
   frambuffer设备层是对图像设备的一种抽象,它代表了视频硬件的帧缓存,使得应用程序通过定义好的接口就可以访问硬件。所以应用程序不需要考虑底层的(寄存器级)的操作。应用程序对设备文件的访问一般在/dev目录,如 /dev/fb*。
   基本编程框架(与输入子系统基本框架类似):
   1、分配一个fb_info结构体:framebuff_alloc();
   2、设置fb_info;
   3、设置硬件相关操作
   4、注册
   5、注销

2.1需要使用的结构体

fb_info结构体

struct fb_info {
        ... ...
       struct fb_var_screeninfo var;       //可变的参数
       struct fb_fix_screeninfo fix;        //固定的参数
       ... ...
       struct fb_ops *fbops;              //操作函数
       ... ...
       char __iomem *screen_base;        //显存虚拟起始地址
       unsigned long screen_size;          //显存虚拟地址长度
  
       void *pseudo_palette;                
//假的16色调色板,里面存放了16色的数据,可以通过8bpp数据来找到调色板里面的16色颜色索引值,模拟出16色颜色来,节省内存,不需要的话就指向一个不用的数组即可
       ... ...
};

需要使用到的操作函数

static struct fb_ops s3c_lcdfb_ops = {
         .owner                = THIS_MODULE,

         .fb_setcolreg    = my_lcdfb_setcolreg,//设置调色板fb_info-> pseudo_palette,自己构造该函数

         .fb_fillrect      = cfb_fillrect,     //填充矩形,用/drivers/video/ cfbfillrect.c里的函数即可

         .fb_copyarea    = cfb_copyarea,  //复制数据, 用/drivers/video/cfbcopyarea.c里的函数即可

         .fb_imageblit    = cfb_imageblit, //绘画图形, 用/drivers/video/imageblit.c里的函数即可
};

固定参数

struct fb_fix_screeninfo {
       char id[16];                   //id名字
       unsigned long smem_start;  //framebuffer物理起始地址                          
       __u32 smem_len;           //framebuffer长度,字节为单位
       __u32 type;                 //lcd类型,默认值0即可
       __u32 type_aux;               //附加类型,为0
       __u32 visual;                     //画面设置,常用参数如下
// FB_VISUAL_MONO01             0   单色,0:白色,1:黑色
// FB_VISUAL_MONO10             1    单色,1:白色,0:黑色
// FB_VISUAL_TRUECOLOR          2     真彩(TFT:真彩)
// FB_VISUAL_PSEUDOCOLOR     3     伪彩
// FB_VISUAL_DIRECTCOLOR        4     直彩

    __u16 xpanstep;                /*如果没有硬件panning就赋值为0 */
    __u16 ypanstep;                /*如果没有硬件panning就赋值为0 */
    __u16 ywrapstep;                 /*如果没有硬件ywrap就赋值为0 */

    __u32 line_length;                 /*一行的字节数 ,例:(RGB565)240*320,那么这里就等于240*16/8 */

    /*以下成员都可以不需要*/
    unsigned long mmio_start;        /*内存映射IO的起始地址,用于应用层直接访问寄存器,可以不需要*/                                   
       __u32 mmio_len;                   /* 内存映射IO的长度,可以不需要*/
       __u32 accel;                 
       __u16 reserved[3];        

};

可变参数

structfb_var_screeninfo{                                    
   __u32xres;                    /*可见屏幕一行有多少个像素点*/
    __u32 yres;                      /*可见屏幕一列有多少个像素点*/
    __u32 xres_virtual;         /*虚拟屏幕一行有多少个像素点 */       
    __u32  yres_virtual;       /*虚拟屏幕一列有多少个像素点*/
    __u32 xoffset;                 /*虚拟到可见屏幕之间的行偏移,若可见和虚拟的分辨率一样,就直接设为0*/
    __u32 yoffset;                 /*虚拟到可见屏幕之间的列偏移*/
    __u32  bits_per_pixel;    /*每个像素的位数即BPP,比如:RGB565则填入16*/
    __u32 grayscale;           /*非0时,指的是灰度,真彩直接填0即可*/

    struct fb_bitfield red;          //fb缓存的R位域, fb_bitfield结构体成员如下:
//__u32 offset;          区域偏移值,比如RGB565中的R,就在第11位
//__u32 length;                   区域长度,比如RGB565的R,共有5位
//__u32 msb_right;  msb_right ==0,表示数据左边最大, msb_right!=0,表示数据右边最大


    struct fb_bitfield green;    /*fb缓存的G位域*/
    struct fb_bitfield blue;       /*fb缓存的B位域*/

   /*以下参数都可以不填,默认为0*/
    struct fb_bitfield transp;   /*透明度,不需要填0即可*/    
 
    __u32nonstd;                    /* != 0表示非标准像素格式*/
    __u32 activate;                 /*设为0即可*/
    __u32height;                     /*外设高度(单位mm),一般不需要填*/
    __u32width;                      /*外设宽度(单位mm),一般不需要填*/
    __u32 accel_flags;        /*过时的参数,不需要填*/

    /* 除了pixclock本身外,其他的都以像素时钟为 单位*/ 
    __u32pixclock;                   /*像素时钟(皮秒)*/
    __u32 left_margin;         /*行切换,从同步到绘图之间的延迟*/
    __u32right_margin;        /*行切换,从绘图到同步之间的延迟*/
    __u32upper_margin;       /*帧切换,从同步到绘图之间的延迟*/
    __u32lower_margin;       /*帧切换,从绘图到同步之间的延迟*/
    __u32hsync_len;              /*水平同步的长度*/
    __u32 vsync_len;           /*垂直同步的长度*/
    __u32 sync;
    __u32 vmode;
    __u32 rotate;
    __u32reserved[5];        /*保留*/
}

3驱动程序

步骤如下:

在驱动init入口函数中:
1)分配一个fb_info结构体
2)设置fb_info
  2.1)设置固定的参数fb_info-> fix
  2.2) 设置可变的参数fb_info-> var
  2.3) 设置操作函数fb_info-> fbops
  2.4) 设置fb_info 其它的成员

3)设置硬件相关的操作
  3.1)配置LCD引脚
  3.2)根据LCD手册设置LCD控制器
  3.3)分配显存(framebuffer),把地址告诉LCD控制器和fb_info
4)开启LCD,并注册fb_info: register_framebuffer()
  4.1) 直接在init函数中开启LCD(后面讲到电源管理,再来优化)
    控制LCDCON5允许PWREN信号,
    然后控制LCDCON1输出PWREN信号,
    输出GPB0高电平来开背光,
  4.2) 注册fb_info

在驱动exit出口函数中:
1)卸载内核中的fb_info
2) 控制LCDCON1关闭PWREN信号,关背光,iounmap注销地址
3)释放DMA缓存地址dma_free_writecombine()
4)释放注册的fb_info

具体代码:

#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/clk.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/div64.h>

#include <asm/mach/map.h>
#include <asm/arch/regs-lcd.h>
#include <asm/arch/regs-gpio.h>
#include <asm/arch/fb.h>

static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info);


struct lcd_regs {
	unsigned long	lcdcon1;
	unsigned long	lcdcon2;
	unsigned long	lcdcon3;
	unsigned long	lcdcon4;
	unsigned long	lcdcon5;
    unsigned long	lcdsaddr1;
    unsigned long	lcdsaddr2;
    unsigned long	lcdsaddr3;
    unsigned long	redlut;
    unsigned long	greenlut;
    unsigned long	bluelut;
    unsigned long	reserved[9];
    unsigned long	dithmode;
    unsigned long	tpal;
    unsigned long	lcdintpnd;
    unsigned long	lcdsrcpnd;
    unsigned long	lcdintmsk;
    unsigned long	lpcsel;
};

static struct fb_ops s3c_lcdfb_ops = {
	.owner		= THIS_MODULE,
	.fb_setcolreg	= s3c_lcdfb_setcolreg,
	.fb_fillrect	= cfb_fillrect,
	.fb_copyarea	= cfb_copyarea,
	.fb_imageblit	= cfb_imageblit,
};


static struct fb_info *s3c_lcd;
static volatile unsigned long *gpbcon;
static volatile unsigned long *gpbdat;
static volatile unsigned long *gpccon;
static volatile unsigned long *gpdcon;
static volatile unsigned long *gpgcon;
static volatile struct lcd_regs* lcd_regs;
static u32 pseudo_palette[16];


/* from pxafb.c */
static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
	chan &= 0xffff;
	chan >>= 16 - bf->length;
	return chan << bf->offset;
}


static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info)
{
	unsigned int val;
	
	if (regno > 16)
		return 1;

	/* 用red,green,blue三原色构造出val */
	val  = chan_to_field(red,	&info->var.red);
	val |= chan_to_field(green, &info->var.green);
	val |= chan_to_field(blue,	&info->var.blue);
	
	//((u32 *)(info->pseudo_palette))[regno] = val;
	pseudo_palette[regno] = val;
	return 0;
}

static int lcd_init(void)
{
	/* 1. 分配一个fb_info */
	s3c_lcd = framebuffer_alloc(0, NULL);

	/* 2. 设置 */
	/* 2.1 设置固定的参数 */
	strcpy(s3c_lcd->fix.id, "mylcd");
	s3c_lcd->fix.smem_len = 480*272*16/8;
	s3c_lcd->fix.type     = FB_TYPE_PACKED_PIXELS;
	s3c_lcd->fix.visual   = FB_VISUAL_TRUECOLOR; /* TFT */
	s3c_lcd->fix.line_length = 480*2;
	
	/* 2.2 设置可变的参数 */
	s3c_lcd->var.xres           = 480;
	s3c_lcd->var.yres           = 272;
	s3c_lcd->var.xres_virtual   = 480;
	s3c_lcd->var.yres_virtual   = 272;
	s3c_lcd->var.bits_per_pixel = 16;

	/* RGB:565 */
	s3c_lcd->var.red.offset     = 11;
	s3c_lcd->var.red.length     = 5;
	
	s3c_lcd->var.green.offset   = 5;
	s3c_lcd->var.green.length   = 6;

	s3c_lcd->var.blue.offset    = 0;
	s3c_lcd->var.blue.length    = 5;

	s3c_lcd->var.activate       = FB_ACTIVATE_NOW;
	
	
	/* 2.3 设置操作函数 */
	s3c_lcd->fbops              = &s3c_lcdfb_ops;
	
	/* 2.4 其他的设置 */
	s3c_lcd->pseudo_palette = pseudo_palette;
	//s3c_lcd->screen_base  = ;  /* 显存的虚拟地址 */ 
	s3c_lcd->screen_size   = 480*272*16/8;

	/* 3. 硬件相关的操作 */
	/* 3.1 配置GPIO用于LCD */
	gpbcon = ioremap(0x56000010, 8);
	gpbdat = gpbcon+1;
	gpccon = ioremap(0x56000020, 4);
	gpdcon = ioremap(0x56000030, 4);
	gpgcon = ioremap(0x56000060, 4);

    *gpccon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[7:0],LCDVF[2:0],VM,VFRAME,VLINE,VCLK,LEND */
	*gpdcon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[23:8] */
	
	*gpbcon &= ~(3);  /* GPB0设置为输出引脚 */
	*gpbcon |= 1;
	*gpbdat &= ~1;     /* 输出低电平 */

	*gpgcon |= (3<<8); /* GPG4用作LCD_PWREN */
	
	/* 3.2 根据LCD手册设置LCD控制器, 比如VCLK的频率等 */
	lcd_regs = ioremap(0x4D000000, sizeof(struct lcd_regs));

	/* bit[17:8]: VCLK = HCLK / [(CLKVAL+1) x 2], LCD手册P14
	 *            10MHz(100ns) = 100MHz / [(CLKVAL+1) x 2]
	 *            CLKVAL = 4
	 * bit[6:5]: 0b11, TFT LCD
	 * bit[4:1]: 0b1100, 16 bpp for TFT
	 * bit[0]  : 0 = Disable the video output and the LCD control signal.
	 */
	lcd_regs->lcdcon1  = (4<<8) | (3<<5) | (0x0c<<1);

#if 1
	/* 垂直方向的时间参数
	 * bit[31:24]: VBPD, VSYNC之后再过多长时间才能发出第1行数据
	 *             LCD手册 T0-T2-T1=4
	 *             VBPD=3
	 * bit[23:14]: 多少行, 320, 所以LINEVAL=320-1=319
	 * bit[13:6] : VFPD, 发出最后一行数据之后,再过多长时间才发出VSYNC
	 *             LCD手册T2-T5=322-320=2, 所以VFPD=2-1=1
	 * bit[5:0]  : VSPW, VSYNC信号的脉冲宽度, LCD手册T1=1, 所以VSPW=1-1=0
	 */
	lcd_regs->lcdcon2  = (1<<24) | (271<<14) | (1<<6) | (9);


	/* 水平方向的时间参数
	 * bit[25:19]: HBPD, VSYNC之后再过多长时间才能发出第1行数据
	 *             LCD手册 T6-T7-T8=17
	 *             HBPD=16
	 * bit[18:8]: 多少列, 240, 所以HOZVAL=240-1=239
	 * bit[7:0] : HFPD, 发出最后一行里最后一个象素数据之后,再过多长时间才发出HSYNC
	 *             LCD手册T8-T11=251-240=11, 所以HFPD=11-1=10
	 */
	lcd_regs->lcdcon3 = (1<<19) | (479<<8) | (1);

	/* 水平方向的同步信号
	 * bit[7:0]	: HSPW, HSYNC信号的脉冲宽度, LCD手册T7=5, 所以HSPW=5-1=4
	 */	
	lcd_regs->lcdcon4 = 40;
	/* 信号的极性 
	 * bit[11]: 1=565 format
	 * bit[10]: 0 = The video data is fetched at VCLK falling edge
	 * bit[9] : 1 = HSYNC信号要反转,即低电平有效 
	 * bit[8] : 1 = VSYNC信号要反转,即低电平有效 
	 * bit[6] : 0 = VDEN不用反转
	 * bit[3] : 0 = PWREN输出0
	 * bit[1] : 0 = BSWP
	 * bit[0] : 1 = HWSWP 2440手册P413
	 */
	lcd_regs->lcdcon5 = (1<<11) | (0<<10) | (1<<9) | (1<<8) | (1<<0);
	
	/* 3.3 分配显存(framebuffer), 并把地址告诉LCD控制器 */
	s3c_lcd->screen_base = dma_alloc_writecombine(NULL, s3c_lcd->fix.smem_len, &s3c_lcd->fix.smem_start, GFP_KERNEL);
	
	lcd_regs->lcdsaddr1  = (s3c_lcd->fix.smem_start >> 1) & ~(3<<30);
	lcd_regs->lcdsaddr2  = ((s3c_lcd->fix.smem_start + s3c_lcd->fix.smem_len) >> 1) & 0x1fffff;
	lcd_regs->lcdsaddr3  = (480*16/16);  /* 一行的长度(单位: 2字节) */	
	
	//s3c_lcd->fix.smem_start = xxx;  /* 显存的物理地址 */
	/* 启动LCD */
	lcd_regs->lcdcon1 |= (1<<0); /* 使能LCD控制器 */
	lcd_regs->lcdcon5 |= (1<<3); /* 使能LCD本身 */
	*gpbdat |= 1;     /* 输出高电平, 使能背光 */		

	/* 4. 注册 */
	register_framebuffer(s3c_lcd);
	
	return 0;
}

static void lcd_exit(void)
{
	unregister_framebuffer(s3c_lcd);
	lcd_regs->lcdcon1 &= ~(1<<0); /* 关闭LCD本身 */
	*gpbdat &= ~1;     /* 关闭背光 */
	dma_free_writecombine(NULL, s3c_lcd->fix.smem_len, s3c_lcd->screen_base, s3c_lcd->fix.smem_start);
	iounmap(lcd_regs);
	iounmap(gpbcon);
	iounmap(gpccon);
	iounmap(gpdcon);
	iounmap(gpgcon);
	framebuffer_release(s3c_lcd);
}

module_init(lcd_init);
module_exit(lcd_exit);

MODULE_LICENSE("GPL");

4测试

&nbsp;1、配置内核(make menuconfig)时,去掉内核原来的lcd驱动程序。首先make menuconfig,选择Device Drives—Graphics support—s3c2410LCD framebuffer support(选为M)
由于上述LCD驱动程序使用到了系统自带的模块( .fb_fillrect = cfb_fillrect, //填充矩形,用/drivers/video/ cfbfillrect.c里的函数即可
.fb_copyarea = cfb_copyarea, //复制数据, 用/drivers/video/cfbcopyarea.c里的函数即可
.fb_imageblit = cfb_imageblit, //绘画图形, 用/drivers/video/imageblit.c里的函数即可)
   2、make moudles:编译模块,得到上述需要使用到的三个模块
  3、使用nfs下载uImage到开发板(也可以使用其他方法)
  4、挂载驱动程序
在这里插入图片描述
  上图为未挂载对应驱动模块的故障显示。

发布了29 篇原创文章 · 获赞 1 · 访问量 544

猜你喜欢

转载自blog.csdn.net/qq_45173769/article/details/103896366