rsa special

[ReSnAd]-- iqmp ipmq e,c,\(\phi(n)\)

题目:

class Key:
    PRIVATE_INFO = ['P', 'Q', 'D', 'DmP1', 'DmQ1']
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)
        assert self.bits % 8 == 0

    def ispub(self):
        return all(not hasattr(self, key) for key in self.PRIVATE_INFO)

    def ispriv(self):
        return all(hasattr(self, key) for key in self.PRIVATE_INFO)

    def pub(self):
        p = deepcopy(self)
        for key in self.PRIVATE_INFO:
            if hasattr(p, key):
                delattr(p, key)
        return p

    def priv(self):
        raise NotImplementedError()
def genkey(bits):
    assert bits % 2 == 0
    while True:
        p = genprime(bits // 2)
        q = genprime(bits // 2)
        e = 65537
        d, _, g = egcd(e, (p-1) * (q-1))
        if g != 1: continue
        iQmP, iPmQ, _ = egcd(q, p)
        return Key(
            N=p*q, P=p, Q=q, E=e, D=d%((p-1)*(q-1)), DmP1=d%(p-1), DmQ1=d%(q-1),
            iQmP=iQmP%p, iPmQ=iPmQ%q, bits=bits,
        )
def encrypt(key, data):
    data = bytes2num(pad(data, key.bits))
    assert 0 <= data and data < key.N
    data = pow(data, key.E, key.N)
    return num2bytes(data, key.bits // 8)

def decrypt(key, data):
    assert key.ispriv() and len(data) * 8 == key.bits
    data = bytes2num(data)
    assert 0 <= data and data < key.N
    v1 = pow(data, key.DmP1, key.P)
    v2 = pow(data, key.DmQ1, key.Q)
    data = (v2 * key.P * key.iPmQ + v1 * key.Q * key.iQmP) % key.N
    return unpad(num2bytes(data, key.bits // 8))

给出变量\(ipmd,iqmp,e,\phi(n),c\)

注意到ipmq,iqmp,_=egcd(p,q),得到

\(ipmq\cdot p\equiv1(\bmod q)\\iqmp\cdot q\equiv1(\bmod p)\)

目标是推出p,q

\(\begin{cases}ipmq\cdot p=k_1\cdot q+1\\iqmp\cdot q=k_2\cdot p+1\end{cases}\)

两式相加得

\(\because ipmq\cdot p\cdot iqmp\cdot q=k_1\cdot q\cdot k_2\cdot p+k_1\cdot q+k_2\cdot p+1\)
\(\therefore (ipmq\cdot iqmp-k_1\cdot k_2)\cdot n=k_1\cdot q +k_2\cdot p+1\)

再注意iqmp=iqmp%p,ipmq=ipmq%q

\(\begin{cases}iqmp\leq p\\ipmq\geq q\end{cases}\longrightarrow\begin{cases}0\leq k_1<p\\0\leq k_2<q\end{cases}\)

\(k_1,k_2\)为右极限,带入前式右边

\((ipmq\cdot iqmp-k_1\cdot k_2)\cdot n<2n+1\)

所以\((ipmq\cdot iqmp-k_1\cdot k_2)\cdot n\)只能1 or 2

为2时,右边\(k_1,k_2\)必须取p,q,不可能。于是,只能为1

所以\(n=k_1\cdot q+k_2\cdot p+1\)

由3,4两相加得\(ipmq\cdot p+iqmp\cdot q=k_1\cdot q+k_2\cdot p+2=n+1\)

\(\phi(n)=(p-1)\cdot(q-1)=n-(q+p)+1\)

列出方程组

\(\begin{cases}ipmq\cdot p+iqmp\cdot q=n+1\\\phi(n)=n-(p+q)+1\\\phi(n)=(p-1)\cdot(q-1)\end{cases}\)

三个未知数,n,p,q,三条方程,可解

用z3跑一下就好

Exp:

from z3 import *
import gmpy2
from Crypto.Util.number import long_to_bytes
q=Int("q")
p=Int("p")
n=Int("n")
phi = 11177929896833318778267064419554047209804133035532602158237892469506082395935495256139136112194510151728917586404919115707761109072628761295860181662822356164160284726297946695851442119129722147684494637497443200139538149832495961915450185804086755272971387407998204100589137627495400914243828434106078332327997903842841517071021248147779935078071506489655500155896938283840729728572328660647233974344849571246788826036265850539775145330135792207209473452843737567371694666658091855216070403504619639510901644370971614286091867701992201923071041178318790575030522483839410855929335515391080189720203086802888683798400
iqmp = 91015809392527255523072044687980286577671138545257803641612547883387289541035388722157767029686572001797549231630088970758132893695316792508265294751302240594796242084165161239587935396541914404832318478070695600559420277875549100164011180835754613742632525637982101603421982448705454195363628987806367263766
ipmq = 10870198964186987138989651624057552405853366954080463316431710442091837631287759912193054100505356356476481503550009625275319473929512195371174525538642232600176213853601253377888749818545192155785873323173291991086758912490744417777560275318548708479769299122462125768416235737869558154549710389717852257846
s=Solver()
s.add(iqmp*q+ipmq*p==n+1)
s.add(phi==(p-1)*(q-1))
s.add(phi==n-(q+p)+1)
s.check()
#print(s.model())
p = 100920329311023043792405408005417242117374946885462223687244834540168939266980874513828622981269823935831791149302266474816959342903482904850705622841034674617774508046423149433115499066314613920674997684075319293745518393044329170181630440249931588961323218471139932722932324367911140345310018504720309693151
q = 110759942750329561983364096770824818957156636845110590823134362698749612147788955083351174879972411435569300696393151260960779092387966200431706198509584768247841937719219850118991339268977853455607397866025870712323459278215127588375709815956587698977630219989552045686550681692693762584298742938231996726337

c = 0x3ce4e91042f61e3b03537d825e7619a02b3f729a91e2de4fb724b95cabe8fb2a7a92c4270025d93aed94f1726ca761083328a7784806e1467f0bc204ef95484ce6b0d207574c6dba4fa91664db4c787e3df517bcfc370a0c5eed8a70b45be8d1e757a9d40eb410e66d2110ac9ece435f76d71e134e2bdbe565e8853e1100ae276211c2b9c49219bca8805ff697dcf84be00b071c3be01f35ba9a4ea1d8ef2c69044982a7fc021d2f6f93b8755948a606a8a376e74d995f439aeeb844ecf678a189916adca406197a1d2eaf2abe84ae6e794560537bcde43a1504f135874d5de9e0a2d95093e4ba7a87641e769e46a911c94ff60525b21c9c709068a89808b6bf
e=65537

d=gmpy2.invert(e,phi)
m=gmpy2.powmod(c,d,p*q)
print(long_to_bytes(m))

Flag:fductf{b97ba9e174d916d30609a6e8b3d78ca3}

[RoarCTF2019]babyRSA -- wilson

题目:

import sympy
import random

def myGetPrime():
    A= getPrime(513)
    print(A)
    B=A-random.randint(1e3,1e5)
    print(B)
    return sympy.nextPrime((B!)%A)
p=myGetPrime()
#A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
#B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596

q=myGetPrime()
#A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
#B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026

r=myGetPrime()

n=p*q*r
#n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
c=pow(flag,e,n)
#e=0x1001
#c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428
#so,what is the flag?

注意的事B!不是什么运算,是表示b的阶乘

威尔逊定理\((p-1)!\equiv-1\bmod p\)
关键步骤就是运用威尔逊定理

\(b=a-x\)
\((a-x)!\cdot(a-x+1)\cdot(a-x+2)\cdot…(a-1)\equiv-1\bmod a\)

连乘b+1到a-1为止,并求逆。得到-b!,b!=a-b!

Exp:

import gmpy2
from Crypto.Util.number import long_to_bytes
A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596

A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026

n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733

e=0x1001
c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428

def wilison(b,a):
    p=1
    b=b+1
    while b<a:
        p*=b
        p%=a
        b+=1
    return a-p

p=gmpy2.next_prime(gmpy2.invert(wilison(B1,A1),A1))
q=gmpy2.next_prime(gmpy2.invert(wilison(B2,A2),A2))

r=n//q//p
phi=(p-1)*(q-1)*(r-1)
d=gmpy2.invert(e,phi)
m=gmpy2.powmod(c,d,n)
print(long_to_bytes(m))
[NCTF2019]childRSA -- \(\phi(q),\phi(p)\)是多个小因子累乘

题目:


from random import choice
from Crypto.Util.number import isPrime, sieve_base as primes
from flag import flag


def getPrime(bits):
    while True:
        n = 2
        while n.bit_length() < bits:
            n *= choice(primes)
        if isPrime(n + 1):
            return n + 1

e = 0x10001
m = int.from_bytes(flag.encode(), 'big')
p, q = [getPrime(2048) for _ in range(2)]
n = p * q
c = pow(m, e, n)

# n = 32849718197337581823002243717057659218502519004386996660885100592872201948834155543125924395614928962750579667346279456710633774501407292473006312537723894221717638059058796679686953564471994009285384798450493756900459225040360430847240975678450171551048783818642467506711424027848778367427338647282428667393241157151675410661015044633282064056800913282016363415202171926089293431012379261585078566301060173689328363696699811123592090204578098276704877408688525618732848817623879899628629300385790344366046641825507767709276622692835393219811283244303899850483748651722336996164724553364097066493953127153066970594638491950199605713033004684970381605908909693802373826516622872100822213645899846325022476318425889580091613323747640467299866189070780620292627043349618839126919699862580579994887507733838561768581933029077488033326056066378869170169389819542928899483936705521710423905128732013121538495096959944889076705471928490092476616709838980562233255542325528398956185421193665359897664110835645928646616337700617883946369110702443135980068553511927115723157704586595844927607636003501038871748639417378062348085980873502535098755568810971926925447913858894180171498580131088992227637341857123607600275137768132347158657063692388249513
# c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108%

先讲非预期解

从加密过程中素数生成中可以看出p,q应该很接近,此时可以尝试yafu分解大素数

但是命令行模式下无法输入太长,我们新建一个n.txt,在里面写入n的值,注意最后要加换行!然后用在命令行用命令yafu-x64.exe "factor(@)" -batchfile n.txt。然后几秒钟后就得到了pq的值。

出题人想法:
http://www.soreatu.com/ctf/writeups/Writeup%20for%20Crypto%20problems%20in%20NCTF%202019.html#childrsa

其他题目之后再补充……

猜你喜欢

转载自www.cnblogs.com/militray-axe/p/12232909.html
RSA