Java NIO——Selector机制解析二《转》

在前些天的《Java NIO类库Selector机制解析》文章中,我们知道了下面的事情:
 
1)Sun的JVM在实现Selector上,在Linux和Windows平台下的细节。
2)Selector类的wakeup()方法如何唤醒阻塞在select()系统调用上的细节。
 
先给大家做一个简单的回顾,在Windows下,Sun的Java虚拟机在Selector.open()时会自己和自己建立loopback的TCP链接;在Linux下,Selector会创建pipe。这主要是为了Selector.wakeup()可以方便唤醒阻塞在select()系统调用上的线程(通过向自己所建立的TCP链接和管道上随便写点什么就可以唤醒阻塞线程)
 
我们知道,无论是建立TCP链接还是建立管道都会消耗系统资源,而在Windows上,某些Windows上的防火墙设置还可能会导致Java的Selector因为建立不起loopback的TCP链接而出现异常。
 
而在我的另一篇文章《用GDB调试Java程序》中介绍了另一个Java的解释器——GNU的gij,以及编译器gcj,不但可以比较高效地运行Java程序,而且还可以把Java程序直接编译成可执行文件。
 
GNU的之所以要重做一个Java的编译和解释器,其一个重要原因就是想解释Sun的JVM的效率和资源耗费问题。当然,GNU的Java编译/解释器并不需要考虑太多复杂的平台,他们只需要专注于Linux和衍生自Unix System V的操作系统,对于开发人员来说,离开了Windows,一切都会变得简单起来。在这里,让我们看看GNU的gij是如何解释Selector.open()和Selector.wakeup()的。
 
同样,我们需要一个测试程序。在这里,为了清晰,我不会例出所有的代码,我只给出我所使用的这个程序的一些关键代码。
 
我的这个测试程序中,和所有的Socket程序一样,下面是一个比较标准的框架,当然,这个框架应该是在一个线程中,也就是一个需要继承Runnable接口,并实现run()方法的一个类。(注意:其中的s是一个成员变量,是Selector类型,以便主线程序使用)
 
 
        //生成一个侦听端
        ServerSocketChannel ssc = ServerSocketChannel.open();
        //将侦听端设为异步方式
        ssc.configureBlocking(false);
        //生成一个信号监视器
        s = Selector.open();
        //侦听端绑定到一个端口
        ssc.socket().bind(new InetSocketAddress(port));
        //设置侦听端所选的异步信号OP_ACCEPT
        ssc.register(s,SelectionKey.OP_ACCEPT);
  
        System.out.println("echo server has been set up ......");
 
        while(true){
            int n = s.select();
            if (n == 0) { //没有指定的I/O事件发生
               continue;
            }    
            Iterator it = s.selectedKeys().iterator();    
            while (it.hasNext()) {
                SelectionKey key = (SelectionKey) it.next();
                if (key.isAcceptable()) { //侦听端信号触发
                     …… …… ……
                     …… …… ……
                }  
                if (key.isReadable()) { //某socket可读信号
                     …… …… ……
                     …… …… ……                   
                }    
                it.remove();
            }
         }


 
而在主线程中,我们可以通过Selector.wakeup()来唤醒这个阻塞在select()上的线程,下面是写在主线程中的唤醒程序:
 
 
new Thread(this).start();
try{
    //Sleep 30 seconds
    Thread.sleep(30000);
    System.out.println("wakeup the select");
    s.wakeup();
}catch(Exception e){
        e.printStackTrace();
}
 
 
这个程序在主线程中,先启动一个线程,也就是上面那个Socket线程,然后休息30秒,为的是让上面的那个线程有阻塞在select(),然后打印出一条信息,这是为了我们用strace命令查看具体的系统调用时能够快速定位。之后调用的是Selector的wakeup()方法来唤醒侦听线程。
 
接下来,我们可以通过两种方式来编译这个程序:
1)使用gcj或是sun的javac编译成class文件,然后使用gij解释执行。
2)使用gcj直接编译成可执行文件。
(无论你用那种方法,都是一样的结果,本文使用第二种方法,关于gcj的编译方法,请参看我的《用GDB调试Java程序》)
 
编译成可执行文件后,执行程序时,使用lsof命令,我们可以看到没有任何pipe的建立。可见GNU的解释更为的节省资源。而对于一个Unix的C程序员来说,这意味着如果要唤醒select()只能使用pthread_kill()来发送一个信号了。下面就让我们使用strace命令来验证这个想法。
 
下图是使用strace命令来跟踪整个程序运行时的系统调用,我们利用我们的输出的“wakeup the select”字符串快速的找到了wakeup的实际系统调用。
 
 
果然,我们可可以看到,tgkill(5829, 5831, SIGHUP)这个系统调用,第一个参数是“源线程id”,第二个参数是“目的线程id”,第三个参数是“信号SIGHUP”。通过每一行前面的线程号我们可以看到紧接着tgkill后面的5831线程的“… select resumed”字样。
 
可见,GNU的确是使用最为传统的pthread_kill或kill系统调用向阻塞线程发信号的方法来实现Selector.wakeup()的,这也证明了GNU的Java编译/解释器是不会消耗系统文件描述符的。而我们也终于看到了回归经典的Java实现机制。

 

原文地址:http://haoel.blog.51cto.com/313033/124570

猜你喜欢

转载自todd-fly.iteye.com/blog/2310446