算法-动态规划-解决01背包问题

一、问题描述:有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?
二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现;
三、动态规划的原理及过程:

eg:number=4,capacity=8

i 1 2 3 4
w(体积) 2 3 4 5
v(价值) 3 4 5 6

1、原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

2、过程

a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选),Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积(重量);

b) 建立模型,即求max(V1X1+V2X2+…+VnXn);

c) 约束条件,W1X1+W2X2+…+WnXn<capacity;

d) 定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值;

e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。判断该问题是否满足最优性原理,采用反证法证明:

假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,

扫描二维码关注公众号,回复: 5653128 查看本文章

假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+VnYn)+V1X1 >
(V2X2+V3X3+…+VnXn)+V1X1;

而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1

(V1X1+V2X2+…+VnXn);

该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;

f) 寻找递推关系式,面对当前商品有两种可能性:

第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{
V(i-1,j),V(i-1,j-w(i))+v(i) }

其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);

由此可以得出递推关系式:

  1. j<w(i) V(i,j)=V(i-1,j)

  2. j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

g) 填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

在这里插入图片描述

h) 然后一行一行的填表,

  1. 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;

  2. 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{
    V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;

  3. 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{
    V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10;所以填完表如下图:

在这里插入图片描述

void FindMax()//动态规划
{
    int i,j;
    //填表
    for(i=1;i<=number;i++)
    {
        for(j=1;j<=capacity;j++)
        {
            if(j<w[i])//包装不进
            {
                V[i][j]=V[i-1][j];
            }
            else//能装
            {
                if(V[i-1][j]>V[i-1][j-w[i]]+v[i])//不装价值大
                {
                    V[i][j]=V[i-1][j];
                }
                else//前i-1个物品的最优解与第i个物品的价值之和更大
                {
                    V[i][j]=V[i-1][j-w[i]]+v[i];
                }
            }
        }
    }
}

i) 表格填完,最优解即是V(number,capacity)=V(4,8)=10,但还不知道解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  1. V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);

V(i,j)=V(i-1,j-w(i))+v(i)实时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));

  1. 一直遍历到i=0结束为止,所有解的组成都会找到。

j) 如上例子,

最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);

  1. 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);

而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
4) 有V(1,0)=V(0,0)=0,所以第1件商品没被选择;

k) 到此,01背包问题已经解决,利用动态规划解决此问题的效率即是填写此张表的效率,所以动态规划的时间效率为O(numbercapacity)=O(nc),由于用到二维数组存储子问题的解,所以动态规划的空间效率为O(n*c);

void FindWhat(int i,int j)//寻找解的组成方式
{
    if(i>=0)
    {
        if(V[i][j]==V[i-1][j])//相等说明没装
        {
            item[i]=0;//全局变量,标记未被选中
            FindWhat(i-1,j);
        }
        else if( j-w[i]>=0 && V[i][j]==V[i-1][j-w[i]]+v[i] )
        {
            item[i]=1;//标记已被选中
            FindWhat(i-1,j-w[i]);//回到装包之前的位置
        }
    }
}

三、蛮力法检验:

1) 蛮力法是解决01背包问题最简单最容易的方法,但是效率很低

2) (X1,X2,…,Xn)其中Xi=0或1表示第i件商品选或不选,共有n(n-1)/2种可能;

3)
最简单的方式就是把所有拿商品的方式都列出来,最后再做判断此方法是否满足装包条件,并且通过比较和记录找出最优解和解组成(如果满足则记录此时的价值和装的方式,当下一次的装法优于这次,则更新记录,如此下去到最后便会找到最优解,同时解组成也找到);

4) n件商品,共有n(n-1)/2种可能,故蛮力法的效率是指数级别的,可见效率很低;

5)
蛮力法效率低不建议采取,但可以用于检验小规模的动态规划解背包问题的正确性和可行性,如下图输出可见,解01背包问题用动态规划是可行的:

总结:

对于01背包问题,用蛮力法与用动态规划解决得到的最优解和解组成是一致的,所以动态规划解决此类问题是可行的。动态规划效率为线性,蛮力法效率为指数型,结合以上内容和理论知识可以得出,解决此问题用动态规划比用蛮力法适合得多。

动态规划可以解决哪些类型的问题

待解决的原问题较难,但此问题可以被不断拆分成一个个小问题,而小问题的解是非常容易获得的;如果单单只是利用递归的方法来解决原问题,那么采用的是分治法的思想,动态规划具有记忆性,将子问题的解都记录下来,以免在递归的过程中重复计算,从而减少了计算量。

文章转载自:https://www.cnblogs.com/Christal-R/p/Dynamic_programming.html 原文章包含动态规划算法的空间优化。

猜你喜欢

转载自blog.csdn.net/feiqinbushizheng/article/details/86612896