分布式ID生成策略

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014401141/article/details/84564681

目录

1.ID生成系统的需求

2.分布式系统唯一ID生成策略

1. 数据库自增长序列或字段

2.UUID

3.SnowFlake雪花算法

4. 利用zookeeper生成唯一ID

5. MongoDB的ObjectId

6. Redis生成ID


1.ID生成系统的需求

1.全局唯一性:不能出现重复的ID,最基本的要求。
2.趋势递增:MySQL InnoDB引擎使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应尽量使用有序的主键保证写入性能。
3.单调递增:保证下一个ID一定大于上一个ID。
4.信息安全:如果ID是连续递增的,恶意用户就可以很容易的窥见订单号的规则,从而猜出下一个订单号,如果是竞争对手,就可以直接知道我们一天的订单量。所以在某些场景下,需要ID无规则。

第3、4两个需求是互斥的,无法同时满足。

同时,在大型分布式网站架构中,除了需要满足ID生成自身的需求外,还需要ID生成系统可用性极高。想象以下,如果ID生成系统瘫痪,那么整个业务无法进行下去,那将是一次灾难。
因此,总结ID生成系统还需要满足如下的需求:
1.高可用,可用性达到5个9或4个9。
2.高QPS,性能不能太差,否则容易造成线程堵塞。
3.平均延迟和TP999(保证99.9%的请求都能成功的最低延迟)延迟都要尽可能低。

2.分布式系统唯一ID生成策略

1. 数据库自增长序列或字段

最常见的方式。利用数据库,全数据库唯一。

优点:

1)简单,代码方便,性能可以接受。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。

2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。

3)在性能达不到要求的情况下,比较难于扩展。

4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。

5)分表分库的时候会有麻烦。

优化方案:

1)针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

2.UUID

UUID是指在一台机器在同一时间中生成的数字在所有机器中都是唯一的。按照开放软件基金会(OSF)制定的标准计算,用到了以太网卡地址、纳秒级时间、芯片ID码和许多可能的数字
UUID由以下几部分的组合:
(1)当前日期和时间。
(2)时钟序列。
(3)全局唯一的IEEE机器识别号,如果有网卡,从网卡MAC地址获得,没有网卡以其他方式获得。
标准的UUID格式为:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (8-4-4-4-12),以连字号分为五段形式的36个字符,示例:550e8400-e29b-41d4-a716-446655440000
Java标准类库中已经提供了UUID的API。

UUID.randomUUID()

优点

  • 性能非常高:本地生成,没有网络消耗。

缺点

  • 不易存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
  • ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用。
  • 不可读。
  • 没有排序,无法保证趋势递增。

3.SnowFlake雪花算法

雪花ID生成的是一个64位的二进制正整数,然后转换成10进制的数。64位二进制数由如下部分组成:

snowflake id生成规则

  • 1位标识符:始终是0,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0。
  • 41位时间戳:41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截 )得到的值,这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的。
  • 10位机器标识码:可以部署在1024个节点,如果机器分机房(IDC)部署,这10位可以由 5位机房ID + 5位机器ID 组成。
  • 12位序列:毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号

优点

  • 简单高效,生成速度快。
  • 时间戳在高位,自增序列在低位,整个ID是趋势递增的,按照时间有序递增。
  • 灵活度高,可以根据业务需求,调整bit位的划分,满足不同的需求。

缺点

  • 依赖机器的时钟,如果服务器时钟回拨,会导致重复ID生成。
  • 在分布式环境上,每个服务器的时钟不可能完全同步,有时会出现不是全局递增的情况。

snowflake Java实现

package com.alen.distributed.problem.id;

/**
 * SnowflakeID生成策略
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。
 * 41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,
 * 经测试,SnowFlake每秒能够产生26万ID左右。
 *
 * @author alen
 * @create 2018-11-27 14:38
 **/

public class SnakeFakeId {

    /**
     * 开始时间截 (2018-11-27)
     */
    private final long twepoch = 1420041600000L;

    /**
     * 机器id所占的位数
     */
    private final long workerIdBits = 5L;

    /**
     * 数据标识id所占的位数
     */
    private final long datacenterIdBits = 5L;

    /**
     * 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
     */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

    /**
     * 支持的最大数据标识id,结果是31
     */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    /**
     * 序列在id中占的位数
     */
    private final long sequenceBits = 12L;

    /**
     * 机器ID向左移12位
     */
    private final long workerIdShift = sequenceBits;

    /**
     * 数据标识id向左移17位(12+5)
     */
    private final long datacenterIdShift = sequenceBits + workerIdBits;

    /**
     * 时间截向左移22位(5+5+12)
     */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    /**
     * 工作机器ID(0~31)
     */
    private long workerId;

    /**
     * 数据中心ID(0~31)
     */
    private long datacenterId;

    /**
     * 毫秒内序列(0~4095)
     */
    private long sequence = 0L;

    /**
     * 上次生成ID的时间截
     */
    private long lastTimestamp = -1L;

    //==============================Constructors=====================================

    /**
     * 构造函数
     *
     * @param workerId     工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnakeFakeId(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }


    /**
     * 获得下一个ID (该方法是线程安全的)
     *
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();

        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        //上次生成ID的时间截
        lastTimestamp = timestamp;

        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     *
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     *
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }


    /**
     * 测试
     */
    public static void main(String[] args) {
        SnakeFakeId idWorker = new SnakeFakeId(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

百度基于 Snowflake算法的唯一ID生成器---UidGenerator,由Java编写。

地址:https://github.com/baidu/uid-generator

4. 利用zookeeper生成唯一ID

zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。

 

5. MongoDB的ObjectId

MongoDB的ObjectId和snowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB 从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

其格式如下:

前4 个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5 个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId 大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4 个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId 获取这个信息。
接下来的3 字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。
为了确保在同一台机器上并发的多个进程产生的ObjectId 是唯一的,接下来的两字节来自产生ObjectId 的进程标识符(PID)。
前9 字节保证了同一秒钟不同机器不同进程产生的ObjectId 是唯一的。后3 字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId 也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId。

实现的源码可以到MongoDB官方网站下载。

6. Redis生成ID

当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。

这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。

1. 可以用Redis的原子操作 INCR和INCRBY来实现。

Redis Incr 命令将 key 中储存的数字值增一,如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。

Redis Incrby 命令将 key 中储存的数字加上指定的增量值,如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。

2. 可以利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。

Redis从2.6版本开始引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务端原子的执行多个Redis命令。

(源码地址:https://github.com/hengyunabc/redis-id-generator

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

A:1,6,11,16,21

B:2,7,12,17,22

C:3,8,13,18,23

D:4,9,14,19,24

E:5,10,15,20,25

这个,随便负载到哪个机确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以方式单点故障的问题。

另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。

2)需要编码和配置的工作量比较大。

DEMO代码:

package com.alen.distributed.problem.id.redis;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.support.atomic.RedisAtomicLong;
import org.springframework.stereotype.Component;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Random;

/**
 * 用Redis的原子操作 INCR和INCRBY来实现
 *
 * @author alen
 * @create 2018-11-27 18:00
 **/
@Component
public class RedisIdGenerator {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    private static final Logger log = LoggerFactory.getLogger(RedisIdGenerator.class);

    private static final String REDIS_DISTRIBUTED_ID = "REDIS_DISTRIBUTED_ID";

    private static final int minLength = 36;

    public Long generateId(String key) {
        RedisAtomicLong counter = new RedisAtomicLong(key, redisTemplate.getConnectionFactory());
        // counter.expireAt(null);
        return counter.incrementAndGet();
    }


    /**
     * @param type 三位业务编码
     * @return
     */
    public String generateCode(String type) {
        try {
            Long id = null;
            id = this.generateId(REDIS_DISTRIBUTED_ID);
            if (id != null) {
                return format(id, type, minLength);
            }
        } catch (Exception e) {
            log.info("error-->redis生成id时出现异常");
            log.error(e.getMessage(), e);
        }
        return null;
    }

    //设定格式
    private static String format(Long id, String type, Integer minLength) {
        StringBuffer sb = new StringBuffer();
        DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS");
        sb.append(dtf.format(LocalDateTime.now()));
        sb.append(type);
        String strId = String.valueOf(id);
        sb.append(getRandomNumber());
        int length = strId.length()+sb.length();
        if (length < minLength) {
            for (int i = 0; i < minLength - length; i++) {
                sb.append("0");
            }
            sb.append(strId);
        } else {
            sb.append(strId);
        }
        return sb.toString();
    }
    //得到四位随机数
    private static String getRandomNumber(){
        int  random=(int)(Math.random()*8999)+1000;
        return String.valueOf(random);
    }

    public static void main(String[] args) throws InterruptedException {
        RedisIdGenerator redisIdGenerator = new RedisIdGenerator();
        String id = redisIdGenerator.generateCode("0001");
        System.out.println(id);
    }
}

猜你喜欢

转载自blog.csdn.net/u014401141/article/details/84564681