AQS源码解析 个人见解

 <pre>
*      +------+  prev +-----+       +-----+
* head |      | <---- |     | <---- |     |  tail
*      +------+       +-----+       +-----+
* </pre>
import sun.misc.Unsafe;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractOwnableSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.LockSupport;

public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable {

    private static final long serialVersionUID = 7373984972572414691L;

    /**
     * Creates a new {@code AbstractQueuedSynchronizer} instance
     * with initial synchronization state of zero.
     */
    //构造器
    protected AbstractQueuedSynchronizer() {
    }

    //Node节点
    static final class Node {
        /**
         * Marker to indicate a node is waiting in shared mode
         */
        //共享锁  newNode()相当于新建一个node节点
        static final Node SHARED = new Node();
        /**
         * Marker to indicate a node is waiting in exclusive mode
         */
        //独占锁标识 null
        static final Node EXCLUSIVE = null;

        /**
         * waitStatus value to indicate thread has cancelled
         */
        //线程waitStatus标识  1 代表任务已结束
        static final int CANCELLED = 1;
        /**
         * waitStatus value to indicate successor's thread needs unparking
         */
        //waitStatus等待被唤醒
        static final int SIGNAL = -1;
        /**
         * waitStatus value to indicate thread is waiting on condition
         */
        //waitStatus在conditon单向链表的标识
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        //waitStatus 尝试获取共享锁传播标识
        static final int PROPAGATE = -3;

        /**
         * Status field, taking on only the values:
         * SIGNAL:     The successor of this node is (or will soon be)
         * blocked (via park), so the current node must
         * unpark its successor when it releases or
         * cancels. To avoid races, acquire methods must
         * first indicate they need a signal,
         * then retry the atomic acquire, and then,
         * on failure, block.
         * CANCELLED:  This node is cancelled due to timeout or interrupt.
         * Nodes never leave this state. In particular,
         * a thread with cancelled node never again blocks.
         * CONDITION:  This node is currently on a condition queue.
         * It will not be used as a sync queue node
         * until transferred, at which time the status
         * will be set to 0. (Use of this value here has
         * nothing to do with the other uses of the
         * field, but simplifies mechanics.)
         * PROPAGATE:  A releaseShared should be propagated to other
         * nodes. This is set (for head node only) in
         * doReleaseShared to ensure propagation
         * continues, even if other operations have
         * since intervened.
         * 0:          None of the above
         * <p>
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         * <p>
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        //线程等待状态标识 1,-1,-2,-3
        volatile int waitStatus;

        /**
         * Link to predecessor node that current node/thread relies on
         * for checking waitStatus. Assigned during enqueuing, and nulled
         * out (for sake of GC) only upon dequeuing.  Also, upon
         * cancellation of a predecessor, we short-circuit while
         * finding a non-cancelled one, which will always exist
         * because the head node is never cancelled: A node becomes
         * head only as a result of successful acquire. A
         * cancelled thread never succeeds in acquiring, and a thread only
         * cancels itself, not any other node.
         */
        //node前一个节点
        volatile Node prev;

        /**
         * Link to the successor node that the current node/thread
         * unparks upon release. Assigned during enqueuing, adjusted
         * when bypassing cancelled predecessors, and nulled out (for
         * sake of GC) when dequeued.  The enq operation does not
         * assign next field of a predecessor until after attachment,
         * so seeing a null next field does not necessarily mean that
         * node is at end of queue. However, if a next field appears
         * to be null, we can scan prev's from the tail to
         * double-check.  The next field of cancelled nodes is set to
         * point to the node itself instead of null, to make life
         * easier for isOnSyncQueue.
         */
        //指向node节点的下一个节点
        volatile Node next;

        /**
         * The thread that enqueued this node.  Initialized on
         * construction and nulled out after use.
         */
        //用于存储node节点中的线程
        volatile Thread thread;

        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        //下一个等待者  用于condition单向链表队列
        Node nextWaiter;

        /**
         * Returns true if node is waiting in shared mode.
         */
        //判断是否为共享锁
        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        /**
         * Returns previous node, or throws NullPointerException if null.
         * Use when predecessor cannot be null.  The null check could
         * be elided, but is present to help the VM.
         *
         * @return the predecessor of this node
         */
        //获取当前节点的前驱节点,Node prev如果为null,throw 空指针异常
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {    // Used to establish initial head or SHARED marker
        }

        //构造器,用于codition中 addWaiter()队列
        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        //用于condition
        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

    /**
     * Head of the wait queue, lazily initialized.  Except for
     * initialization, it is modified only via method setHead.  Note:
     * If head exists, its waitStatus is guaranteed not to be
     * CANCELLED.
     */
    //头节点
    private transient volatile Node head;

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.、
     * 等待队列的尾部,延迟初始化。修改只能通过
     * 方法enq添加新的等待节点。
     */
    //尾节点
    private transient volatile Node tail;

    /**
     * The synchronization state.
     */
    //队列中的state值 0,1,2,3,........  0 初始化  1独占锁  2可重入锁 .....
    private volatile int state;

    /**
     * Returns the current value of synchronization state.
     * This operation has memory semantics of a {@code volatile} read.
     *
     * @return current state value
     */
    //获取状态值
    protected final int getState() {
        return state;
    }

    /**
     * Sets the value of synchronization state.
     * This operation has memory semantics of a {@code volatile} write.
     *
     * @param newState the new state value
     */
    //当acciqure(int args) or release(int args) 等 需要设置状态值
    protected final void setState(int newState) {
        state = newState;
    }

    /**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a {@code volatile} read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     * value was not equal to the expected value.
     */
    //CAS操作  设置state 状态  expect 内存中的值  update 要更新的值
    protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

    // Queuing utilities

    /**
     * The number of nanoseconds for which it is faster to spin
     * rather than to use timed park. A rough estimate suffices
     * to improve responsiveness with very short timeouts.
     */
    static final long spinForTimeoutThreshold = 1000L;

    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     *
     * @param node the node to insert
     * @return node's predecessor
     */
    //初始化node节点  将当前node节点插入SyncQueue同步队列至尾节点
    private Node enq(final Node node) {
        //自旋
        for (; ; ) {
            //尾节点
            Node t = tail;
            //尾节点为Null,必须初始化同步SyncQueue队列
            if (t == null) { // Must initialize
                //初始化头节点
                if (compareAndSetHead(new Node()))
                    //头尾节点相连
                    tail = head;
            } else {
                //指向node节点的前驱节点
                node.prev = t;
                //t为尾节点时,CAS设置node节点为尾节点
                if (compareAndSetTail(t, node)) {
                    //t ---> node  相当于调换位置,尾节点t变成了node的前节点 node变为尾节点
                    t.next = node;
                    //返回node尾节点的前一个节点
                    return t;
                }
            }
        }
    }

    /**
     * Creates and enqueues node for current thread and given mode.
     * 为当前线程和给定模式创建和排队节点。
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */

    private Node addWaiter(Node mode) {
        //创建指向当前线程的node节点
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        //尾节点赋值pred
        Node pred = tail;
        if (pred != null) {
            //尾节点指向node节点, 变换位置,node节点为尾节点,pred为node节点的前节点
            //相当于双向链表指针
            node.prev = pred;
            //node节点设置为队列的尾节点
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                //返回node节点
                return node;
            }
        }
        //如果尾节点为空,初始化 入列
        enq(node);
        //返回加入等待队列的node节点
        return node;
    }

    /**
     * Sets head of queue to be node, thus dequeuing. Called only by
     * acquire methods.  Also nulls out unused fields for sake of GC
     * and to suppress unnecessary signals and traversals.
     *
     * @param node the node
     */
    //设置头节点 等待被唤醒
    private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }

    /**
     * Wakes up node's successor, if one exists.
     *
     * @param node the node
     */
    //唤醒节点的后续等待节点线程争抢cpu资源
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        //获取waitStatus  0,-1,-2,-3
        int ws = node.waitStatus;
        //ws<0代表该节点等待被唤醒
        if (ws < 0)
            //CAS设置waitStatus 为0
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        //获取node.next node指向下一个节点
        Node s = node.next;
        //是否为null,或者状态waitStatus>0 清除下一个节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            //从队尾部向头部依次遍历,寻找waitStatus状态为等待被唤醒的节点
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    //等待被唤醒的节点赋值给s
                    s = t;
        }
        if (s != null)
            //唤醒该节点的线程争抢资源
            LockSupport.unpark(s.thread);
    }

    /**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     * <p>
     * *共享模式释放动作——信号的后继和保证
     * *传播。(注意:对于排他模式,释放的数量是有限的
     * *在需要信号时,致电unpark继承处的head。
     * <p>
     * 释放共享模式的锁
     */
    private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         *
         * 确保发布能够传播,即使存在其他版本
         *正在进行的获得/版本。这一切照常进行
         *如有需要,可尝试将头部后继器取出
         *信号。但如果没有,则将状态设置为传播到
         *确保发布后,传播仍在继续。
         *此外,我们必须循环,以防添加新节点
          当我们在做这件事的时候。而且,不像其他用法
         * unpark继承者,我们需要知道CAS是否重置状态
         *失败,如果是,请重新检查。
         */

        //自旋
        for (; ; ) {
            //头节点
            Node h = head;
            //判断SyncQueue同步队列是否只有一个节点
            if (h != null && h != tail) {
                //获取头节点状态
                int ws = h.waitStatus;
                //状态为-1  等待被唤醒
                if (ws == Node.SIGNAL) {
                    //设置waitStatus状态失败 跳过
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    //唤醒后续节点线程争抢资源
                    unparkSuccessor(h);
                    //节点状态为0 CAS waitStatus不能传播  跳过
                } else if (ws == 0 &&
                        !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            //从尾部向前直至到头部 break
            if (h == head)                   // loop if head changed
                break;
        }
    }

    /**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if either propagate > 0 or
     * PROPAGATE status was set.
     * <p>
     * 设置队列头,并检查是否有后续队列在等待
     * *在共享模式下,如果是传播,则传播> 0或
     * *设定传播状态
     *
     * @param node      the node
     * @param propagate the return value from a tryAcquireShared  tryAcquireShared返回的值
     */
    private void setHeadAndPropagate(Node node, int propagate) {
        //记录头节点便于核对
        Node h = head; // Record old head for check below
        //当前节点设置为头节点
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         *
         *
        如果:
        *传播由主叫人指示,
        *或记录(记为h。waitStatus要么之前
        *或在setHead之后)通过以前的操作
        *(注意:这使用了sign-check of waitStatus,因为
        *传播状态可能转换为信号。)
        *和
        *下一个节点在共享模式下等待,
        或者我们不知道,因为它看起来是空的
        *
        *这两种检查中的稳健性都可能导致
        *不必要的起床,但只有当有多的时候
         *
         *
         */
        //tryAcquireShared尝试获取共享锁的return value >表明获取共享锁成功
        //等待状态waitStatus<0等待被唤醒  or 头节点为null
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
                (h = head) == null || h.waitStatus < 0) {
            //指向node节点的下一个节点  s
            Node s = node.next;
            //s为null  || 共享锁
            if (s == null || s.isShared())
                //共享模式释放 and 持续传播
                doReleaseShared();
        }
    }

    // Utilities for various versions of acquire

    /**
     * Cancels an ongoing attempt to acquire.
     * 取消正在尝试获取资源的节点
     *
     * @param node the node
     */
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        //节点是否存在
        if (node == null)
            return;
        //设置thread 为null
        node.thread = null;

        // Skip cancelled predecessors
        //跳过取消的前节点
        Node pred = node.prev;
        //waitStatus>0说明该节点被取消或已完成状态
        while (pred.waitStatus > 0)
            //依次从尾向前寻找
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        //下一个节点
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        //完成任务标识 waitStatus=1
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        //如果node是尾节点,remove node节点
        if (node == tail && compareAndSetTail(node, pred)) {
            //CAS设置尾节点pred
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            //如果后继者需要信号,试着设置pred的下一个链接
            //所以它会得到一个signal。否则唤醒它传播
            if (pred != head &&
                    ((ws = pred.waitStatus) == Node.SIGNAL ||
                            (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                    pred.thread != null) {
                //指向Node节点的next Node
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    //CAS设置pred的next节点为node,next next等待被唤醒
                    compareAndSetNext(pred, predNext, next);
            } else {
                //唤醒当前节点的后续节点
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     * <p>
     * 检查和更新未能获取的节点的状态。
     * 如果线程阻塞,返回true。这是主要信号
     * *控制所有的获取循环。要求pred == node.prev。
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    //检查更新未能获取资源的节点的状态 线程阻塞则return true
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        //pred waitStatus
        int ws = pred.waitStatus;
        //-1 等待被唤醒
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             * 此节点已经设置了请求发布的状态
             *发出信号,以便安全停车。
             */
            //可挂起阻塞状态  park  重量级锁
            return true;
        //等待状态>0  跳过
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                //从队列尾部依次向头节点寻找 waitStatus<=0的节点
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            //设置pred的下个节点为node节点
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             *
             * waitStatus必须为0或PROPAGATE。表明我们
                需要信号,但不要停车。来电者需要
            *   停车前请务必确认无法获取。
             */
            //设置状态为signal 等待被唤醒
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    /**
     * Convenience method to interrupt current thread.
     */
    //当前线程自我中断
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

    /**
     * Convenience method to park and then check if interrupted
     *
     * @return {@code true} if interrupted
     */
    //当前线程挂起并check是否中断过
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    /*
     * Various flavors of acquire, varying in exclusive/shared and
     * control modes.  Each is mostly the same, but annoyingly
     * different.  Only a little bit of factoring is possible due to
     * interactions of exception mechanics (including ensuring that we
     * cancel if tryAcquire throws exception) and other control, at
     * least not without hurting performance too much.
     */

    /**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     * <p>
     * 为已经在的线程获取独占的不可中断模式
     * *队列。用于条件等待方法和获取方法。
     *
     * @param node the node
     * @param arg  the acquire argument
     * @return {@code true} if interrupted while waiting
     */
    //使线程在等待队列中获取资源,一直获取到资源后才返回。
    // 如果在整个等待过程中被中断过,则返回true,否则返回false。
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            //中断标识
            boolean interrupted = false;
            //自旋
            for (; ; ) {
                //获取node前驱节点
                final Node p = node.predecessor();
                //头节点 and node获取锁成功
                if (p == head && tryAcquire(arg)) {
                    //设置node节点为头节点
                    setHead(node);
                    //p.next=null
                    p.next = null; // help GC
                    failed = false;
                    //不可中断
                    return interrupted;
                }
                //检查更新未能获取资源的节点的状态 park node 挂起node节点
                if (shouldParkAfterFailedAcquire(p, node) &&
                        //线程挂起 检查是否被中断
                        parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            //失败清除
            if (failed)
                //清除node节点
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in exclusive interruptible mode.
     * 获取独占锁/排它锁的中断模式
     *
     * @param arg the acquire argument
     */
    private void doAcquireInterruptibly(int arg)
            throws InterruptedException {
        //Thread.currentThread独占锁node
        final Node node = addWaiter(Node.EXCLUSIVE);
        //失败标识
        boolean failed = true;
        try {
            //自旋
            for (; ; ) {
                //前驱节点
                final Node p = node.predecessor();
                //前驱节点为head头节点,并且当前节点能获取到资源
                if (p == head && tryAcquire(arg)) {
                    //设置当前节点为头节点
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                //是否可中断 interrupt and 挂起 park
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                //clean up node 清除当前节点
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in exclusive timed mode.
     * <p>
     * 在一定时间内获取独占锁
     *
     * @param arg          the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        //时间<=0 false
        if (nanosTimeout <= 0L)
            return false;
        //系统计数当前时间+获取时间  用于后面判断是否超时
        final long deadline = System.nanoTime() + nanosTimeout;
        //独占锁入列
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            //自旋
            for (; ; ) {
                //前驱节点
                final Node p = node.predecessor();
                //前节点为头节点 and 当前线程的节点可获取锁成功
                if (p == head && tryAcquire(arg)) {
                    //设置当前节点为头节点等待被唤醒
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                //用于判断是否超时
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                //是否可以中断 and park挂起
                if (shouldParkAfterFailedAcquire(p, node) &&
                        nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    //中断抛异常标识处理
                    throw new InterruptedException();
            }
        } finally {
            //失败
            if (failed)
                //获取失败,清除当前节点
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in shared uninterruptible mode.
     * 获得共享锁不可中断模式
     *
     * @param arg the acquire argument
     */
    private void doAcquireShared(int arg) {
        //共享addWaiter入列排队
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                //寻找前节点
                final Node p = node.predecessor();
                //前驱节点为头节点
                if (p == head) {
                    //尝试获取共享锁  返回结果可重入锁次数
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        //当前接待你设置头节点,并传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                //是否可以中断 and park 阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                //清除当前节点
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in shared interruptible mode.
     * 获取共享锁的可中断模式
     *
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
        //当前节点共享模式入列
        final Node node = addWaiter(Node.SHARED);
        //清除节点标识
        boolean failed = true;
        try {
            //自旋
            for (; ; ) {
                //获取前驱节点
                final Node p = node.predecessor();
                //前驱节点==head头节点
                if (p == head) {
                    //当前节点尝试获取共享锁
                    int r = tryAcquireShared(arg);
                    //获取重入次数
                    if (r >= 0) {
                        //设置当前节点为头节点,并传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                //当前线程是否阻塞 and中断
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                //清除当前节点
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in shared timed mode.
     * 一定时间内尝试获取共享锁
     *
     * @param arg          the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        //获取时间<=0 不能获取
        if (nanosTimeout <= 0L)
            return false;
        //用于计算超时
        final long deadline = System.nanoTime() + nanosTimeout;
        //当前线程的节点入列
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            //自旋
            for (; ; ) {
                //前驱节点
                final Node p = node.predecessor();
                //判断是否为头节点
                if (p == head) {
                    //共享锁的可重入次数
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        //设置头节点并传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return true;
                    }
                }
                //计算是否超时
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                //是否阻塞 park  and interrupt中断
                if (shouldParkAfterFailedAcquire(p, node) &&
                        nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                //清除node节点
                cancelAcquire(node);
        }
    }

    // Main exported methods

    /**
     * Attempts to acquire in exclusive mode. This method should query
     * if the state of the object permits it to be acquired in the
     * exclusive mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread. This can be used
     * to implement method {@link Lock#tryLock()}.
     *
     * <p>The default
     * implementation throws {@link UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *            passed to an acquire method, or is the value saved on entry
     *            to a condition wait.  The value is otherwise uninterpreted
     *            and can represent anything you like.
     * @return {@code true} if successful. Upon success, this object has
     * been acquired.
     * @throws IllegalMonitorStateException  if acquiring would place this
     *                                       synchronizer in an illegal state. This exception must be
     *                                       thrown in a consistent fashion for synchronization to work
     *                                       correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    //自我实现尝试获取独占锁模式资源
    protected boolean tryAcquire(int arg) {
        /*
        int c= getState();
        if (Thread.currentThread()==getExclusiveOwnerThread()){
            int i = c + arg;
            if (i<0){
                throw new UnsupportedOperationException("");
            }
            setState(i);
        }else{
            acquire(arg);
        }*/
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in exclusive
     * mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *            passed to a release method, or the current state value upon
     *            entry to a condition wait.  The value is otherwise
     *            uninterpreted and can represent anything you like.
     * @return {@code true} if this object is now in a fully released
     * state, so that any waiting threads may attempt to acquire;
     * and {@code false} otherwise.
     * @throws IllegalMonitorStateException  if releasing would place this
     *                                       synchronizer in an illegal state. This exception must be
     *                                       thrown in a consistent fashion for synchronization to work
     *                                       correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    //尝试释放锁资源
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to acquire in shared mode. This method should query if
     * the state of the object permits it to be acquired in the shared
     * mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread.
     *
     * <p>The default implementation throws {@link
     * UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *            passed to an acquire method, or is the value saved on entry
     *            to a condition wait.  The value is otherwise uninterpreted
     *            and can represent anything you like.
     * @return a negative value on failure; zero if acquisition in shared
     * mode succeeded but no subsequent shared-mode acquire can
     * succeed; and a positive value if acquisition in shared
     * mode succeeded and subsequent shared-mode acquires might
     * also succeed, in which case a subsequent waiting thread
     * must check availability. (Support for three different
     * return values enables this method to be used in contexts
     * where acquires only sometimes act exclusively.)  Upon
     * success, this object has been acquired.
     * @throws IllegalMonitorStateException  if acquiring would place this
     *                                       synchronizer in an illegal state. This exception must be
     *                                       thrown in a consistent fashion for synchronization to work
     *                                       correctly.
     * @throws UnsupportedOperationException if shared mode is not supported
     */
    //尝试获取共享锁 通过继承基类,重写该方法
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in shared mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *            passed to a release method, or the current state value upon
     *            entry to a condition wait.  The value is otherwise
     *            uninterpreted and can represent anything you like.
     * @return {@code true} if this release of shared mode may permit a
     * waiting acquire (shared or exclusive) to succeed; and
     * {@code false} otherwise
     * @throws IllegalMonitorStateException  if releasing would place this
     *                                       synchronizer in an illegal state. This exception must be
     *                                       thrown in a consistent fashion for synchronization to work
     *                                       correctly.
     * @throws UnsupportedOperationException if shared mode is not supported
     */
    //释放共享锁 通过继承基类,重写该方法
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * Returns {@code true} if synchronization is held exclusively with
     * respect to the current (calling) thread.  This method is invoked
     * upon each call to a non-waiting {@link ConditionObject} method.
     * (Waiting methods instead invoke {@link #release}.)
     *
     * <p>The default implementation throws {@link
     * UnsupportedOperationException}. This method is invoked
     * internally only within {@link ConditionObject} methods, so need
     * not be defined if conditions are not used.
     *
     * @return {@code true} if synchronization is held exclusively;
     * {@code false} otherwise
     * @throws UnsupportedOperationException if conditions are not supported
     */
    //是否为独占锁/排它锁
    protected boolean isHeldExclusively() {
        throw new UnsupportedOperationException();
    }

    /**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *            {@link #tryAcquire} but is otherwise uninterpreted and
     *            can represent anything you like.
     */
    //获取独占锁的入口
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
                //使线程在等待队列中获取资源,一直获取到资源后才返回。
                // 如果在整个等待过程中被中断过,则返回true,否则返回false。
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

    /**
     * Acquires in exclusive mode, aborting if interrupted.
     * Implemented by first checking interrupt status, then invoking
     * at least once {@link #tryAcquire}, returning on
     * success.  Otherwise the thread is queued, possibly repeatedly
     * blocking and unblocking, invoking {@link #tryAcquire}
     * until success or the thread is interrupted.  This method can be
     * used to implement method {@link Lock#lockInterruptibly}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *            {@link #tryAcquire} but is otherwise uninterpreted and
     *            can represent anything you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    //获取可中断的独占锁入口
    public final void acquireInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    /**
     * Attempts to acquire in exclusive mode, aborting if interrupted,
     * and failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquire}, returning on success.  Otherwise, the thread is
     * queued, possibly repeatedly blocking and unblocking, invoking
     * {@link #tryAcquire} until success or the thread is interrupted
     * or the timeout elapses.  This method can be used to implement
     * method {@link Lock#tryLock(long, TimeUnit)}.
     *
     * @param arg          the acquire argument.  This value is conveyed to
     *                     {@link #tryAcquire} but is otherwise uninterpreted and
     *                     can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    //一定时间内尝试获取锁资源
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
                doAcquireNanos(arg, nanosTimeout);
    }

    /**
     * Releases in exclusive mode.  Implemented by unblocking one or
     * more threads if {@link #tryRelease} returns true.
     * This method can be used to implement method {@link Lock#unlock}.
     *
     * @param arg the release argument.  This value is conveyed to
     *            {@link #tryRelease} but is otherwise uninterpreted and
     *            can represent anything you like.
     * @return the value returned from {@link #tryRelease}
     */
    //释放锁资源
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                //释放锁资源
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    /**
     * Acquires in shared mode, ignoring interrupts.  Implemented by
     * first invoking at least once {@link #tryAcquireShared},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquireShared} until success.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *            {@link #tryAcquireShared} but is otherwise uninterpreted
     *            and can represent anything you like.
     */
    //尝试获取共享锁
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }

    /**
     * Acquires in shared mode, aborting if interrupted.  Implemented
     * by first checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success.  Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted.
     *
     * @param arg the acquire argument.
     *            This value is conveyed to {@link #tryAcquireShared} but is
     *            otherwise uninterpreted and can represent anything
     *            you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    //尝试获取可中断的共享锁
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    /**
     * Attempts to acquire in shared mode, aborting if interrupted, and
     * failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquireShared}, returning on success.  Otherwise, the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted or the timeout elapses.
     *
     * @param arg          the acquire argument.  This value is conveyed to
     *                     {@link #tryAcquireShared} but is otherwise uninterpreted
     *                     and can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    //一定时间内尝试获取共享锁资源
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 ||
                doAcquireSharedNanos(arg, nanosTimeout);
    }

    /**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *            {@link #tryReleaseShared} but is otherwise uninterpreted
     *            and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    //释放共享锁  可重写 tryReleaseShared()
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    // Queue inspection methods

    /**
     * Queries whether any threads are waiting to acquire. Note that
     * because cancellations due to interrupts and timeouts may occur
     * at any time, a {@code true} return does not guarantee that any
     * other thread will ever acquire.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there may be other threads waiting to acquire
     */
    //队列中是否有线程
    public final boolean hasQueuedThreads() {
        return head != tail;
    }

    /**
     * Queries whether any threads have ever contended to acquire this
     * synchronizer; that is if an acquire method has ever blocked.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there has ever been contention
     */
    public final boolean hasContended() {
        return head != null;
    }

    /**
     * Returns the first (longest-waiting) thread in the queue, or
     * {@code null} if no threads are currently queued.
     *
     * <p>In this implementation, this operation normally returns in
     * constant time, but may iterate upon contention if other threads are
     * concurrently modifying the queue.
     *
     * @return the first (longest-waiting) thread in the queue, or
     * {@code null} if no threads are currently queued
     */
    //获取队列中等待的第一个线程
    public final Thread getFirstQueuedThread() {
        // handle only fast path, else relay
        return (head == tail) ? null : fullGetFirstQueuedThread();
    }

    /**
     * Version of getFirstQueuedThread called when fastpath fails
     */
    private Thread fullGetFirstQueuedThread() {
        /*
         * The first node is normally head.next. Try to get its
         * thread field, ensuring consistent reads: If thread
         * field is nulled out or s.prev is no longer head, then
         * some other thread(s) concurrently performed setHead in
         * between some of our reads. We try this twice before
         * resorting to traversal.
         */
        Node h, s;
        Thread st;
        //获取队列中的线程
        if (((h = head) != null && (s = h.next) != null &&
                s.prev == head && (st = s.thread) != null) ||
                ((h = head) != null && (s = h.next) != null &&
                        s.prev == head && (st = s.thread) != null))
            return st;

        /*
         * Head's next field might not have been set yet, or may have
         * been unset after setHead. So we must check to see if tail
         * is actually first node. If not, we continue on, safely
         * traversing from tail back to head to find first,
         * guaranteeing termination.
         */
        //尾节点
        Node t = tail;
        Thread firstThread = null;
        //从尾部依次向头部循环,直至找到firstThread
        while (t != null && t != head) {
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread;
    }

    /**
     * Returns true if the given thread is currently queued.
     *
     * <p>This implementation traverses the queue to determine
     * presence of the given thread.
     *
     * @param thread the thread
     * @return {@code true} if the given thread is on the queue
     * @throws NullPointerException if the thread is null
     */
    //当前线程是否在队列中
    public final boolean isQueued(Thread thread) {
        if (thread == null)
            throw new NullPointerException();
        //从尾部向头部依次遍历寻找当前线程是否在队列中
        for (Node p = tail; p != null; p = p.prev)
            if (p.thread == thread)
                return true;
        return false;
    }

    /**
     * Returns {@code true} if the apparent first queued thread, if one
     * exists, is waiting in exclusive mode.  If this method returns
     * {@code true}, and the current thread is attempting to acquire in
     * shared mode (that is, this method is invoked from {@link
     * #tryAcquireShared}) then it is guaranteed that the current thread
     * is not the first queued thread.  Used only as a heuristic in
     * ReentrantReadWriteLock.
     */
    //头节点是否为独占锁/排他锁
    final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return (h = head) != null &&
                (s = h.next) != null &&
                !s.isShared() &&
                s.thread != null;
    }

    /**
     * Queries whether any threads have been waiting to acquire longer
     * than the current thread.
     *
     * <p>An invocation of this method is equivalent to (but may be
     * more efficient than):
     * <pre> {@code
     * getFirstQueuedThread() != Thread.currentThread() &&
     * hasQueuedThreads()}</pre>
     *
     * <p>Note that because cancellations due to interrupts and
     * timeouts may occur at any time, a {@code true} return does not
     * guarantee that some other thread will acquire before the current
     * thread.  Likewise, it is possible for another thread to win a
     * race to enqueue after this method has returned {@code false},
     * due to the queue being empty.
     *
     * <p>This method is designed to be used by a fair synchronizer to
     * avoid <a href="AbstractQueuedSynchronizer#barging">barging</a>.
     * Such a synchronizer's {@link #tryAcquire} method should return
     * {@code false}, and its {@link #tryAcquireShared} method should
     * return a negative value, if this method returns {@code true}
     * (unless this is a reentrant acquire).  For example, the {@code
     * tryAcquire} method for a fair, reentrant, exclusive mode
     * synchronizer might look like this:
     *
     * <pre> {@code
     * protected boolean tryAcquire(int arg) {
     *   if (isHeldExclusively()) {
     *     // A reentrant acquire; increment hold count
     *     return true;
     *   } else if (hasQueuedPredecessors()) {
     *     return false;
     *   } else {
     *     // try to acquire normally
     *   }
     * }}</pre>
     *
     * @return {@code true} if there is a queued thread preceding the
     * current thread, and {@code false} if the current thread
     * is at the head of the queue or the queue is empty
     * @since 1.7
     */
    //在队列中是否有前驱节点
    public final boolean hasQueuedPredecessors() {
        // The correctness of this depends on head being initialized
        // before tail and on head.next being accurate if the current
        // thread is first in queue.
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t &&
                ((s = h.next) == null || s.thread != Thread.currentThread());
    }


    // Instrumentation and monitoring methods

    /**
     * Returns an estimate of the number of threads waiting to
     * acquire.  The value is only an estimate because the number of
     * threads may change dynamically while this method traverses
     * internal data structures.  This method is designed for use in
     * monitoring system state, not for synchronization
     * control.
     *
     * @return the estimated number of threads waiting to acquire
     */
    //获取队列中的长度
    public final int getQueueLength() {
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire.  Because the actual set of threads may change
     * dynamically while constructing this result, the returned
     * collection is only a best-effort estimate.  The elements of the
     * returned collection are in no particular order.  This method is
     * designed to facilitate construction of subclasses that provide
     * more extensive monitoring facilities.
     *
     * @return the collection of threads
     */
    //获取队列中所有线程的集合
    public final Collection<Thread> getQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire in exclusive mode. This has the same properties
     * as {@link #getQueuedThreads} except that it only returns
     * those threads waiting due to an exclusive acquire.
     *
     * @return the collection of threads
     */
    //获取队列中独占锁/排他锁 模式下线程的集合
    public final Collection<Thread> getExclusiveQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (!p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * Returns a collection containing threads that may be waiting to
     * acquire in shared mode. This has the same properties
     * as {@link #getQueuedThreads} except that it only returns
     * those threads waiting due to a shared acquire.
     *
     * @return the collection of threads
     */
    //获取共享锁的线程集合
    public final Collection<Thread> getSharedQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * Returns a string identifying this synchronizer, as well as its state.
     * The state, in brackets, includes the String {@code "State ="}
     * followed by the current value of {@link #getState}, and either
     * {@code "nonempty"} or {@code "empty"} depending on whether the
     * queue is empty.
     *
     * @return a string identifying this synchronizer, as well as its state
     */
    public String toString() {
        int s = getState();
        String q = hasQueuedThreads() ? "non" : "";
        return super.toString() +
                "[State = " + s + ", " + q + "empty queue]";
    }


    // Internal support methods for Conditions

    /**
     * Returns true if a node, always one that was initially placed on
     * a condition queue, is now waiting to reacquire on sync queue.
     *
     * @param node the node
     * @return true if is reacquiring
     */
    //是否在syncQueue队列中
    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        /*
         * node.prev can be non-null, but not yet on queue because
         * the CAS to place it on queue can fail. So we have to
         * traverse from tail to make sure it actually made it.  It
         * will always be near the tail in calls to this method, and
         * unless the CAS failed (which is unlikely), it will be
         * there, so we hardly ever traverse much.
         */
        //从尾部至头部依次查找
        return findNodeFromTail(node);
    }

    /**
     * Returns true if node is on sync queue by searching backwards from tail.
     * Called only when needed by isOnSyncQueue.
     *
     * @return true if present
     */
    //从尾部至头部依次查找
    private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (; ; ) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }

    /**
     * Transfers a node from a condition queue onto sync queue.
     * Returns true if successful.
     *
     * @param node the node
     * @return true if successfully transferred (else the node was
     * cancelled before signal)
     */
    //转换当前节点状态为signal
    final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
        //增加Node节点为尾节点
        Node p = enq(node);
        //p  node的前驱节点
        int ws = p.waitStatus;
        //不能转换,唤醒当前线程
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

    /**
     * Transfers node, if necessary, to sync queue after a cancelled wait.
     * Returns true if thread was cancelled before being signalled.
     *
     * @param node the node
     * @return true if cancelled before the node was signalled
     */
    //转换当前节点为condition状态 标识  可入列condition单向链表队列
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }
        /*
         * If we lost out to a signal(), then we can't proceed
         * until it finishes its enq().  Cancelling during an
         * incomplete transfer is both rare and transient, so just
         * spin.
         */
        //不在SyncQueue中的node节点
        while (!isOnSyncQueue(node))
            //当前线程放弃资源,重新争抢资源
            Thread.yield();
        return false;
    }

    /**
     * Invokes release with current state value; returns saved state.
     * Cancels node and throws exception on failure.
     *
     * @param node the condition node for this wait
     * @return previous sync state
     */
    //释放
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            //获取状态 0,1,2,...
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                //如果释放失败,则设置状态为已完成
                node.waitStatus = Node.CANCELLED;
        }
    }

    // Instrumentation methods for conditions

    /**
     * Queries whether the given ConditionObject
     * uses this synchronizer as its lock.
     *
     * @param condition the condition
     * @return {@code true} if owned
     * @throws NullPointerException if the condition is null
     */
    //是否为owns
    public final boolean owns(ConditionObject condition) {
        return condition.isOwnedBy(this);
    }

    /**
     * Queries whether any threads are waiting on the given condition
     * associated with this synchronizer. Note that because timeouts
     * and interrupts may occur at any time, a {@code true} return
     * does not guarantee that a future {@code signal} will awaken
     * any threads.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @param condition the condition
     * @return {@code true} if there are any waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *                                      is not held
     * @throws IllegalArgumentException     if the given condition is
     *                                      not associated with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    //condition队列中是否有下一个等待者node节点
    public final boolean hasWaiters(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.hasWaiters();
    }

    /**
     * Returns an estimate of the number of threads waiting on the
     * given condition associated with this synchronizer. Note that
     * because timeouts and interrupts may occur at any time, the
     * estimate serves only as an upper bound on the actual number of
     * waiters.  This method is designed for use in monitoring of the
     * system state, not for synchronization control.
     *
     * @param condition the condition
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *                                      is not held
     * @throws IllegalArgumentException     if the given condition is
     *                                      not associated with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    //获取condition队列中的node大小
    public final int getWaitQueueLength(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitQueueLength();
    }

    /**
     * Returns a collection containing those threads that may be
     * waiting on the given condition associated with this
     * synchronizer.  Because the actual set of threads may change
     * dynamically while constructing this result, the returned
     * collection is only a best-effort estimate. The elements of the
     * returned collection are in no particular order.
     *
     * @param condition the condition
     * @return the collection of threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *                                      is not held
     * @throws IllegalArgumentException     if the given condition is
     *                                      not associated with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    //获取condition队列中的线程集合
    public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitingThreads();
    }

    /**
     * Condition implementation for a {@link
     * AbstractQueuedSynchronizer} serving as the basis of a {@link
     * Lock} implementation.
     *
     * <p>Method documentation for this class describes mechanics,
     * not behavioral specifications from the point of view of Lock
     * and Condition users. Exported versions of this class will in
     * general need to be accompanied by documentation describing
     * condition semantics that rely on those of the associated
     * {@code AbstractQueuedSynchronizer}.
     *
     * <p>This class is Serializable, but all fields are transient,
     * so deserialized conditions have no waiters.
     */
    public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        /**
         * First node of condition queue.
         */
        //firstWaiter 相当于头
        private transient Node firstWaiter;
        /**
         * Last node of condition queue.
         */
        //lastWaiter  尾
        private transient Node lastWaiter;

        /**
         * Creates a new {@code ConditionObject} instance.
         */
        public ConditionObject() {
        }

        // Internal methods

        /**
         * Adds a new waiter to wait queue.
         *
         * @return its new wait node
         */
        //进入condition单向链表队列  @return 新的等待节点
        private Node addConditionWaiter() {
            //尾节点
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                //清除waitStatus状态不为condition的node
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            //新建当前线程入列condition的node节点
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                //尾节点为null,则node为firstWaiter
                firstWaiter = node;
            else
                //尾节点不为null,则指向node节点 node为lastWaiter
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

        /**
         * Removes and transfers nodes until hit non-cancelled one or
         * null. Split out from signal in part to encourage compilers
         * to inline the case of no waiters.
         *
         * @param first (non-null) the first node on condition queue
         */
        //唤醒队列中的firstWaiter
        private void doSignal(Node first) {
            do {
                if ((firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                    (first = firstWaiter) != null);
        }

        /**
         * Removes and transfers all nodes.
         *
         * @param first (non-null) the first node on condition queue
         */
        //唤醒队列中的所有节点
        private void doSignalAll(Node first) {
            lastWaiter = firstWaiter = null;
            do {
                //取出next
                Node next = first.nextWaiter;
                //nextWaiter赋值为null
                first.nextWaiter = null;
                //唤醒
                transferForSignal(first);
                //指向next   从头至尾依次遍历唤醒
                first = next;
            } while (first != null);
        }

        /**
         * Unlinks cancelled waiter nodes from condition queue.
         * Called only while holding lock. This is called when
         * cancellation occurred during condition wait, and upon
         * insertion of a new waiter when lastWaiter is seen to have
         * been cancelled. This method is needed to avoid garbage
         * retention in the absence of signals. So even though it may
         * require a full traversal, it comes into play only when
         * timeouts or cancellations occur in the absence of
         * signals. It traverses all nodes rather than stopping at a
         * particular target to unlink all pointers to garbage nodes
         * without requiring many re-traversals during cancellation
         * storms.
         */
        //清除队列中Node节点waitStatus不为condition的节点
        //从条件队列中取消已取消的服务员节点的链接。
        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    //第一次trail==null
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                } else
                    trail = t;
                t = next;
            }
        }

        // public methods

        /**
         * Moves the longest-waiting thread, if one exists, from the
         * wait queue for this condition to the wait queue for the
         * owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *                                      returns {@code false}
         */
        //唤醒
        public final void signal() {
            //是否为独占锁/排他锁
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            //唤醒队列中第一个node节点
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

        /**
         * Moves all threads from the wait queue for this condition to
         * the wait queue for the owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *                                      returns {@code false}
         */
        //唤醒队列中所有等待节点
        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

        /**
         * Implements uninterruptible condition wait.
         * <ol>
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         * throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled.
         * <li> Reacquire by invoking specialized version of
         * {@link #acquire} with saved state as argument.
         * </ol>
         */
        //等待不中断
        public final void awaitUninterruptibly() {
            //创建当前线程node 节点入列condition单向链表
            Node node = addConditionWaiter();
            //释放  已加入队列,则可以释放当前节点
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            //是否在SyncQueue同步队列中
            while (!isOnSyncQueue(node)) {
                //阻塞  重量级锁 park
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            //使线程在等待队列中获取资源,一直获取到资源后才返回。
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }

        /*
         * For interruptible waits, we need to track whether to throw
         * InterruptedException, if interrupted while blocked on
         * condition, versus reinterrupt current thread, if
         * interrupted while blocked waiting to re-acquire.
         */

        /**
         * Mode meaning to reinterrupt on exit from wait
         *
         * 退出等待时重新中断 标识 1
         */
        private static final int REINTERRUPT = 1;
        /**
         * Mode meaning to throw InterruptedException on exit from wait
         *
         * 退出等待时抛异常中断标识
         */
        private static final int THROW_IE = -1;

        /**
         * Checks for interrupt, returning THROW_IE if interrupted
         * before signalled, REINTERRUPT if after signalled, or
         * 0 if not interrupted.
         */
        //node节点等待等待期间是否被中断过
        private int checkInterruptWhileWaiting(Node node) {
            return Thread.interrupted() ?
                    (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                    0;
        }

        /**
         * Throws InterruptedException, reinterrupts current thread, or
         * does nothing, depending on mode.
         */
        //重新中断该线程 or 抛异常中断 or  do nothing
        private void reportInterruptAfterWait(int interruptMode)
                throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /**
         * Implements interruptible condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         * throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled or interrupted.
         * <li> Reacquire by invoking specialized version of
         * {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        //线程等待  like object.wait()
        public final void await() throws InterruptedException {
            //线程是否中断
            if (Thread.interrupted())
                throw new InterruptedException();
            //当前线程入列 condition
            Node node = addConditionWaiter();
            //释放node节点
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            //当前节点是否在SyncQueue FIFO 队列中
            while (!isOnSyncQueue(node)) {
                //不在 阻塞挂起
                LockSupport.park(this);
                //检查是否在等待中被中断
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            // acquireQueued(node, savedState) 使线程在等待队列中获取资源,一直获取到资源后才返回。
            // 如果在整个等待过程中被中断过,则返回true,否则返回false。
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            //重新中断
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         * throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         * {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        //一定时间内等待
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            //线程是否中断
            if (Thread.interrupted())
                throw new InterruptedException();
            //创建当前线程的node节点 并入列
            Node node = addConditionWaiter();
            //释放node节点
            int savedState = fullyRelease(node);
            //用于判断是否超时
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            //是否在SyncQueue同步队列中
            while (!isOnSyncQueue(node)) {
                //超时
                if (nanosTimeout <= 0L) {
                    //设置waitStatus 为1 cancelled取消状态
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    //阻塞挂起
                    LockSupport.parkNanos(this, nanosTimeout);
                //线程等待期间是否被中断
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                //是否超时标识
                nanosTimeout = deadline - System.nanoTime();
            }
            //队列中尝试获取资源  直至获取资源返回结果 false 获取成功,true表示在获取资源时被中断
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                //重新获取中断标识
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                //清除waitStatus!=condition   -2的节点链接
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                //中断
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

        /**
         * Implements absolute timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         * throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         * {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean awaitUntil(Date deadline)
                throws InterruptedException {
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         * throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         * {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean await(long time, TimeUnit unit)
                throws InterruptedException {
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        //  support for instrumentation

        /**
         * Returns true if this condition was created by the given
         * synchronization object.
         *
         * @return {@code true} if owned
         */
        final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
            return sync == AbstractQueuedSynchronizer.this;
        }

        /**
         * Queries whether any threads are waiting on this condition.
         * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
         *
         * @return {@code true} if there are any waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *                                      returns {@code false}
         */
        //队列中是否有等待node
        protected final boolean hasWaiters() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /**
         * Returns an estimate of the number of threads waiting on
         * this condition.
         * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
         *
         * @return the estimated number of waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *                                      returns {@code false}
         */
        //获取condition队列中等待node的个数
        protected final int getWaitQueueLength() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /**
         * Returns a collection containing those threads that may be
         * waiting on this Condition.
         * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
         *
         * @return the collection of threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *                                      returns {@code false}
         */
        //获取condition队列中的线程集合
        protected final Collection<Thread> getWaitingThreads() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION) {
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }

    /**
     * Setup to support compareAndSet. We need to natively implement
     * this here: For the sake of permitting future enhancements, we
     * cannot explicitly subclass AtomicInteger, which would be
     * efficient and useful otherwise. So, as the lesser of evils, we
     * natively implement using hotspot intrinsics API. And while we
     * are at it, we do the same for other CASable fields (which could
     * otherwise be done with atomic field updaters).
     */
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("next"));

        } catch (Exception ex) {
            throw new Error(ex);
        }
    }

    /**
     * CAS head field. Used only by enq.
     */
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS tail field. Used only by enq.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS waitStatus field of a node.
     */
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                expect, update);
    }

    /**
     * CAS next field of a node.
     */
    private static final boolean compareAndSetNext(Node node,
                                                   Node expect,
                                                   Node update) {
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }
}

猜你喜欢

转载自blog.csdn.net/stackCSDN/article/details/85400499