P、NP、NPC、NP-HARD问题

上周研究生开学第一周,算法课老师提到了诸多概念,因为对算法这块自觉薄弱,所以打算尽所能课余时间多吸收吸收。课上老师提到很多人其实都没有把P、NP、NPC、NP-HARD问题完全搞清楚,我就去查了一下相关资料,引出了很多感兴趣的内容,以后也会选择性的学习和记录。
主要阅读了Matrix67的相关博客:
http://www.matrix67.com/blog/archives/105
其实这篇文章把概念解释的非常有逻辑且清晰,但是对我而言重点不太明显,我这篇主要是针对他的讲解以自己的理解整理一下脉络,做一点扩展、重点地方重点标记。

一、提到算法不得不提的时间复杂度

算法书上一般提到时间复杂度会说, 时间复杂度是指执行算法所需要的计算工作量。时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间增长得有多快。
打个比方,如果数据规模增大n倍,程序运行时间还一样快,那么我们就说这个算法很好,就是O(1)的时间复杂度。
而如果数据规模增大n倍,程序运行时间变成了n倍,那就是O(n),比如找n个数中的最大值。
像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。他们的复杂是显而易见的。
关于复杂度是一个度量,还有两点得说,首先,我们不会说一个算法是O(2*n^3+n^2),因为前面的2是个系数,并不影响其度量问题规模扩大后程序运行时间增长的快慢;n^2在n^3的增长速度前也可以忽略。其次,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低。因为尽管在n很小的时候,前者优于后者,但别忘了,衡量相对增长的速度,随着问题规模增大,后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。

这里还有一个需要提出的问题。 容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者:一种是O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是O(a^n)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

所以我们自然就会问,是不是所有问题都能找到一个多项式级复杂度的方法来解决呢?答案是否定的。输出从1到n这n个数的全排列。不管你用什么方法,你的复杂度都是阶乘级,因为你总得用阶乘级的时间打印出结果来。
一个不大可能会有多项式级算法的问题来:Hamilton回路。问题是这样的:给你一个图,问你能否找到一条经过每个顶点一次且恰好一次(不遗漏也不重复)最后又走回来的路(满足这个条件的路径叫做Hamilton回路)。这个问题现在还没有找到多项式级的算法。事实上,这个问题就是后面要说的NPC问题。

二、P问题和NP问题

P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题(多项式叫polynomial)。一般的算法竞赛的题都是P问题。道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。
P问题我们可以顺利的解决,那么不能很容易找到多项实级时间复杂度的问题我们总得想办法解决吧,所以我们放宽了一下条件,我们找到那些没P问题那么容易解决,但是看起来好像也可以用多项式级时间复杂度解决的问题,引入了NP问题,NP的N是指Non-Deterministic。首先的首先,我们要确认NP问题不是非P类问题NP问题是指可以在多项式的时间里验证一个解的问题NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。验证和猜是指什么呢?
比如,某人拿到了一个求最短路径的问题,问从起点到终点是否有一条小于100个单位长度的路线。它根据数据画好了图,但怎么也算不出来,于是来问我:你看怎么选条路走得最少?我说,我RP很好,肯定能随便给你指条很短的路出来。然后我就胡乱画了几条线,说就这条吧。那人按我指的这条把权值加起来一看,嘿,神了,路径长度98,比100小。于是答案出来了,存在比100小的路径。别人会问他这题怎么做出来的,他就可以说,因为我找到了一个比100 小的解。在这个题中,找一个解很困难,但验证一个解很容易。验证一个解只需要O(n)的时间复杂度,也就是说我可以花O(n)的时间把我猜的路径的长度加出来。那么,只要我RP好,猜得准,我一定能在多项式的时间里解决这个问题。这就是NP问题。
当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。下面我要举的例子是一个经典的例子,它指出了一个目前还没有办法在多项式的时间里验证一个解的问题。很显然,前面所说的Hamilton回路是NP问题,因为验证一条路是否恰好经过了每一个顶点非常容易。但我要把问题换成这样:试问一个图中是否存在Hamilton回路。这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它“没有Hamilton回路”。
之所以要定义NP问题,是因为通常只有NP问题才可能找到多项式的算法。我们不会指望一个连多项式得验证一个解都不行的问题存在一个解决它的多项式级的算法(NP问题我好歹能用多项式级时间去验证一个解吧,比连解都不能验证的好解决多了)。信息学中的号称最困难的问题——“NP问题”,实际上是在探讨NP问题与P类问题的关系。

很显然,所有的P类问题都是NP问题。能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。关键是,人们想知道,是否所有的NP问题都是P类问题呢?。我们可以再用集合的观点来说明。如果把所有P类问题归为一个集合P中,把所有 NP问题划进另一个集合NP中,那么,显然有P属于NP。现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有P=NP?通常所谓的“NP问题”,其实就一句话:证明或推翻P=NP。

三、NPC问题

那么NP到底等不等于P呢?
人们普遍认为,P=NP不成立,也就是说,多数人相信,存在至少一个不可能有多项式级复杂度的算法的NP问题。人们如此坚信P≠NP是有原因的,就是在研究NP问题的过程中找出了一类非常特殊的NP问题叫做NP-完全问题,也即所谓的 NPC问题。C是complete。正是NPC问题的存在,使人们相信P≠NP。
为了说明NPC问题,我们先引入一个概念——约化(Reducibility,有的资料上叫“归约”)。这个部分讲的非常好直接复制了下来。
简单地说,一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。
《算法导论》上举了这么一个例子。比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。按照这个规则把前一个问题转换成后一个问题,两个问题就等价了。同样地,我们可以说,Hamilton回路可以约化为TSP问题(Travelling Salesman Problem,旅行商问题):在Hamilton回路问题中,两点相连即这两点距离为0,两点不直接相连则令其距离为1,于是问题转化为在TSP问题中,是否存在一条长为0的路径。Hamilton回路存在当且仅当TSP问题中存在长为0的回路。
“问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。也就是说,问题A不比问题B难。这很容易理解。既然问题A能用问题B来解决,倘若B的时间复杂度比A的时间复杂度还低了,那A的算法就可以改进为B的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。
很显然,约化具有一项重要的性质:约化具有传递性。如果问题A可约化为问题B,问题B可约化为问题C,则问题A一定可约化为问题C。这个道理非常简单,就不必阐述了。
现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B。
当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。约化的过程只有用多项式的时间完成才有意义。

从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。再回想前面讲的P和NP问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小NP问题的一个稍复杂的大NP问题,那么最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的 NP问题的这样一个超级NP问题?答案居然是肯定的。也就是说,存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC 问题,也就是NP-完全问题。NPC问题的出现使整个NP问题的研究得到了飞跃式的发展。我们有理由相信,NPC问题是最复杂的问题。我们可以看到,人们想表达一个问题不存在多项式的高效算法时应该说它“属于NPC问题”而不是“NP问题”。(别忘了,NP问题是探讨N和NP的关系)

NPC问题的定义非常简单。同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是 NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它(由约化的传递性,则NPC问题定义的第二条也得以满足;至于第一个NPC问题是怎么来的,下文将介绍),这样就可以说它是NPC问题了。
既然所有的NP问题都能约化成NPC问题,那么只要任意一个NPC问题找到了一个多项式的算法,那么所有的NP问题都能用这个算法解决了,NP也就等于P 了。因此,给NPC找一个多项式算法太不可思议了。因此,前文才说,“正是NPC问题的存在,使人们相信P≠NP”。我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

顺便讲一下NP-Hard问题。NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广)。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard**又放宽了限定条件**,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。(他就是那种连用多项式时间验证一个解都未必能成的最难最恶心的问题~)

不要以为NPC问题是一纸空谈。NPC问题是存在的。确实有这么一个非常具体的问题属于NPC问题。下文即将介绍它。
下文即将介绍逻辑电路问题。这是第一个NPC问题。其它的NPC问题都是由这个问题约化而来的。因此,逻辑电路问题是NPC类问题的“鼻祖”。
逻辑电路问题是指的这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。什么叫做逻辑电路呢?一个逻辑电路由若干个输入,一个输出,若干“逻辑门”和密密麻麻的线组成。逻辑电路其实我觉得大家都明白,原文给了一些例子来帮助理解,我直接略过掉了。

逻辑电路问题属于NPC问题。这是有严格证明的。
一、它显然属于NP问题。(你验证的时候往里代入看看最后是不是True不就完了)
二、可以直接证明所有的NP问题都可以约化到它(不要以为NP问题有无穷多个将给证明造成不可逾越的困难)。证明过程相当复杂,其大概意思是说任意一个NP问题的输入和输出都可以转换成逻辑电路的输入和输出(想想计算机内部也不过是一些 0和1的运算嘛),因此对于一个NP问题来说,问题转化为了求出满足结果为True的一个输入(即一个可行解)。

有了第一个NPC问题后,一大堆NPC问题就出现了,因为再证明一个新的NPC问题只需要将一个已知的NPC问题约化到它就行了。后来,Hamilton 回路成了NPC问题,TSP问题也成了NPC问题。现在被证明是NPC问题的有很多,任何一个NPC问题找到了多项式算法的话所有的NP问题都可以完美解决了。因此说,正是因为NPC问题的存在,P=NP变得难以置信。P=NP问题还有许多有趣的东西,有待大家自己进一步的挖掘。攀登这个信息学的巅峰是我们这一代的终极目标。现在我们需要做的,至少是不要把概念弄混淆了。

猜你喜欢

转载自blog.csdn.net/u013453787/article/details/82528272