Java实现链式存储的二叉树

二叉树的定义:  

  二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。

  二叉树的遍历方式主要有:先序遍历(NLR),中序遍历(LNR),后序遍历(LRN),和层次遍历。

  注意:

    由二叉树的先序序列和中序序列可以唯一地确定一颗二叉树;

    由二叉树的后序序列和中序序列可以唯一地确定一颗二叉树;

    由二叉树的层序序列和中序序列可以唯一地确定一棵二叉树;

    但,由二叉树的先序序列和后序序列无法唯一地确定一棵二叉树。

Java实现链式存储的二叉树以及其各种遍历算法:

树节点:

public class TreeNode<E> {
    private E data;  //数据域
    private TreeNode<E> lchild;  //左孩子
    private TreeNode<E> rchild;  //右孩子
   
    TreeNode(){}
   
    TreeNode(E e){
        this.data = e;
    }
   
    TreeNode(E data,TreeNode<E> lchild, TreeNode<E> rchild){
        this.data = data;
        this.lchild = lchild;
        this.rchild = rchild;
    }
   
    public void setData(E data){
        this.data = data;
    }
   
    public E getData(){
        return this.data;
    }
   
    public void setLchild(TreeNode<E> lchild){
        this.lchild = lchild;
    }
   
    public TreeNode<E> getLchild(){
        return this.lchild;
    }
   
    public void setRchild(TreeNode<E> rchild){
        this.rchild = rchild;
    }
   
    public TreeNode<E> getRchild(){
        return this.rchild;
    }
}

二叉树的Java实现:

import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Stack;

/**
 * @author Cherish
 * 二叉树的链式存储结构
 * @param <E>
 */

public class BinaryTree<E> {
    private TreeNode<E> root;  //根节点
    private List<TreeNode> nodeList = null;  //二叉树节点的链式结构
   
    public BinaryTree(){
       
    }
   
    public BinaryTree(TreeNode<E> root){
        this.root = root;
    }
   
    //把一个数组转化为一颗完全二叉树
    public TreeNode<E> buildTree(E[] array){
        nodeList = new LinkedList<TreeNode>();       
        //将数组中的元素依次转换为TreeNode节点,存放于链表中
        for(int i=0; i< array.length; i++){
            nodeList.add(new TreeNode(array[i])); 
        }
        //对前(array.length / 2 - 1)个父节点,按照父节点与孩子节点的数字关系建立完全二叉树
        //对完全二叉树,按从上到下,从左到右的顺序依次编号0,1,2,3....N,则i>0的节点,其左孩子为(2*i+1),
        //其右孩子为(2*i+2)
        for(int j=0; j < (array.length/2-1);j++){
            //左孩子
            nodeList.get(j).setLchild(nodeList.get(j*2+1));
            //右孩子
            nodeList.get(j).setRchild(nodeList.get(j*2+2));
        }
        //最后一个父节点:因为最后一个父节点可能没有右孩子,所以单独处理
        int index = array.length/2 -1;
        //左孩子
        nodeList.get(index).setLchild(nodeList.get(index*2+1));
        //右孩子:如果数组的长度为奇数才有右孩子
        if(array.length % 2 == 1){
            nodeList.get(index).setRchild(nodeList.get(index*2+2));
        }
        root=nodeList.get(0); //设置根节点
        return root;
    }
   
    //得到树的高度
    public int height(TreeNode<E> node){
        if(node == null){
            return 0;
        }else{
            int i = height(node.getLchild());
            int j = height(node.getRchild());
            return (i<j)?(j+1):(i+1);
        }
    }
   
    //得到节点的个数
    public int size(TreeNode<E> node){
        if(node == null){
            return 0;
        }else{
            return 1+ size(node.getLchild())+size(node.getRchild());
        }
    }
   
    //递归实现先序遍历 NLR
    public void preOrder(TreeNode<E> node){
        if(node != null){
            System.out.print(node.getData() + " ");
            preOrder(node.getLchild());
            preOrder(node.getRchild());
        }
    }
    //非递归实现先序遍历 NLR
    public void nonRecPreOrder(TreeNode<E> node){
        Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
        TreeNode<E> nodeTemp = node; //nodeTemp作为遍历指针
        while(nodeTemp != null || !nodeStack.isEmpty()){  //当nodeTemp非空或栈非空时循环
            if(nodeTemp != null){  //根指针非空,遍历左子树
                nodeStack.push(nodeTemp);  //根指针进栈
                System.out.print(nodeStack.peek().getData() + " "); //根指针退栈,访问根节点
                nodeTemp = nodeTemp.getLchild();  //每遇到非空二叉树先向左走
            }else{ //再向右子树走
                nodeTemp = nodeStack.pop();
                nodeTemp = nodeTemp.getRchild();
            }
        }   
    }
   
    //递归实现中序遍历 LNR
    public void inOrder(TreeNode<E> node){
        if(node != null){
            inOrder(node.getLchild());
            System.out.print(node.getData() + " ");
            inOrder(node.getRchild());
        }
    }
   
    //非递归实现中序遍历 LNR
    public void nonRecInOrder(TreeNode<E> node){
        Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
        TreeNode<E> nodeTemp = node;  //nodeTemp作为遍历指针
        while(nodeTemp != null || !nodeStack.isEmpty()){  //当nodeTemp非空或栈非空时循环
            if(nodeTemp != null){  //根指针非空,遍历左子树
                nodeStack.push(nodeTemp);  //根指针进栈
                nodeTemp = nodeTemp.getLchild();  //每遇到非空二叉树先向左走
            }else{
                nodeTemp = nodeStack.pop();  //根指针退栈,访问根节点
                System.out.print(nodeTemp.getData() +" ");
                nodeTemp = nodeTemp.getRchild();  //再向右子树走
            }       
        }
    }
   
    //递归实现后序遍历 LNR
    public void postOrder(TreeNode<E> node){
        if(node != null){
            postOrder(node.getLchild());
            postOrder(node.getRchild());
            System.out.print(node.getData() + " ");
        }
    }
   
    //非递归实现后序遍历 LNR
    public void nonRecPostOrder(TreeNode<E> node){
        Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
        TreeNode<E> nodeTemp = node; //nodeTemp作为遍历指针
        TreeNode<E> preNode = null;  //表示最近一次访问的节点
        while(nodeTemp != null || !nodeStack.isEmpty()){  //当nodeTemp非空或栈非空时循环
            while(nodeTemp != null){  //一直向左走,遍历左子树
                nodeStack.push(nodeTemp);
                nodeTemp = nodeTemp.getLchild();
            }
            nodeTemp = nodeStack.peek();
            if(nodeTemp.getRchild()==null || nodeTemp.getRchild() == preNode){  //右子树为空或右子树已被访问时,该节点出栈
                nodeTemp = nodeStack.pop();
                System.out.print(nodeTemp.getData()+" ");
                preNode = nodeTemp;  //将该节点赋值给最近一个访问节点                   
                nodeTemp = null;  //此处很重要,将刚出栈节点设置为空,对应于while循环的条件之一,否则陷入死循环
            }else{
                nodeTemp = nodeTemp.getRchild(); //遍历右子树
            }
        }
    }
   
   
    //层次遍历
    public void levelOrder(TreeNode<E> root){
        Queue<TreeNode<E>> nodeQueue = new LinkedList<TreeNode<E>>();
        TreeNode<E> node = null;
        nodeQueue.add(root);  //将根节点入队   
        while(!nodeQueue.isEmpty()){  //队列不空循环
            node = nodeQueue.peek();
            System.out.print(node.getData()+" ");
            nodeQueue.poll();    //队头元素出队
            if(node.getLchild() != null){    //左子树不空,则左子树入队列
                nodeQueue.add(node.getLchild());
            }
            if(node.getRchild() != null){    //右子树不空,则右子树入队列
                nodeQueue.add(node.getRchild());
            }
        }
    }
   
    public static void main(String args[]){
        //将一个数组转化为一颗完全二叉树
        Object[] array = {1,2,3,4,5,6,7,8};
        BinaryTree bt = new BinaryTree();
        TreeNode root = bt.buildTree(array);
        System.out.print("树的高度:"); 
        System.out.println(bt.height(root));
        System.out.print("节点的个数:"); 
        System.out.println(bt.size(root));
        System.out.println("先序遍历:"); 
        bt.preOrder(root);
        System.out.println("\n"+"非递归先序遍历:");
        bt.nonRecPreOrder(root);
        System.out.println();
       
 
        System.out.println("中序遍历:"); 
        bt.inOrder(root); 
        System.out.println("\n"+"非递归中序遍历:");
        bt.nonRecInOrder(root);
        System.out.println();
 
        System.out.println("后序遍历:"); 
        bt.postOrder(root); 
        System.out.println("\n"+"非递归后序遍历:");
        bt.nonRecPostOrder(root);
        System.out.println();
       
        System.out.println("层次遍历:"); 
        bt.levelOrder(root);
       
        //手工构建一颗二叉树
        TreeNode nodeA = new TreeNode("A");
        TreeNode nodeB = new TreeNode("B");
        TreeNode nodeC = new TreeNode("C");
        TreeNode nodeD = new TreeNode("D");
        TreeNode nodeE = new TreeNode("E");
        TreeNode nodeF = new TreeNode("F");
        TreeNode nodeG = new TreeNode("G");
        TreeNode nodeH = new TreeNode("H");
        TreeNode nodeI = new TreeNode("I");
        nodeA.setLchild(nodeB);
        nodeA.setRchild(nodeD);
        nodeB.setRchild(nodeC);
        nodeD.setLchild(nodeE);
        nodeD.setRchild(nodeF);
        nodeF.setLchild(nodeG);
        nodeF.setRchild(nodeI);
        nodeG.setRchild(nodeH);
       
       
        System.out.println("\n\n"+"*****************");
        System.out.print("树的高度:"); 
        System.out.println(bt.height(nodeA));
        System.out.print("节点的个数:"); 
        System.out.println(bt.size(nodeA));
        System.out.println("先序遍历:"); 
        bt.preOrder(nodeA); 
        System.out.println(); 
 
        System.out.println("中序遍历:"); 
        bt.inOrder(nodeA); 
        System.out.println(); 
 
        System.out.println("后序遍历:"); 
        bt.postOrder(nodeA); 
        System.out.println();
       
        System.out.println("层次遍历:"); 
        bt.levelOrder(nodeA);
    }
}

上述程序的运行结果:

树的高度:4
节点的个数:8
先序遍历:
1 2 4 8 5 3 6 7
非递归先序遍历:
1 2 4 8 5 3 6 7
中序遍历:
8 4 2 5 1 6 3 7
非递归中序遍历:
8 4 2 5 1 6 3 7
后序遍历:
8 4 5 2 6 7 3 1
非递归后序遍历:
8 4 5 2 6 7 3 1
层次遍历:
1 2 3 4 5 6 7 8

*****************
树的高度:5
节点的个数:9
先序遍历:
A B C D E F G H I
中序遍历:
B C A E D G H F I
后序遍历:
C B E H G I F D A
层次遍历:
A B D C E F G I H

猜你喜欢

转载自www.linuxidc.com/Linux/2015-07/119873.htm